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SUMMARY

Paracellular transport across the selectively permeable
mucosal barrier is essential for intestinal health. Two
distinct pathways, pore and leak, mediate transport across
tight junctions, which are the rate-limiting step in para-
cellular flux. The permeabilities of these routes can be
differentially regulated by immune and inflammatory stim-
uli and, conversely, have distinct effects on intestinal and
systemic immune function.

Defective epithelial barrier function is present in maladies
including epidermal burn injury, environmental lung
damage, renal tubular disease, and a range of immune-
mediated and infectious intestinal disorders. When the
epithelial surface is intact, the paracellular pathway be-
tween cells is sealed by the tight junction. However,
permeability of tight junctions varies widely across tissues
and can be markedly impacted by disease. For example,
tight junctions within the skin and urinary bladder are
largely impermeant, whereas those of the proximal renal
tubule and intestine are selectively permeable to water
and solutes on the basis of their biophysical characteris-
tics. These permeability properties can be regulated by the
immune system with remarkable specificity. Conversely,
modulation of tight junction barrier conductance, espe-
cially within the gastrointestinal tract, can impact immune
homeostasis and diverse pathologies. Thus, tight junctions
are both effectors and targets of immune regulation. Using
the gastrointestinal tract as an example, this review ex-
plores current understanding of this complex interplay
between tight junctions and immunity. (Cell Mol Gastro-
enterol Hepatol 2020;-:-–-; https://doi.org/10.1016/
j.jcmgh.2020.04.001)

Keywords: Intestinal Permeability; Barrier; Myosin Light Chain
Kinase; Enteric Infection; Inflammatory Bowel Disease; Graft-
Versus-Host Disease.

ucosal surfaces are lined by epithelial cells that,

chain kinase; NK, natural killer; TER, transepithelial electrical resis-
tance; TNF, tumor necrosis factor; ZO, zonula occludens.
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116
Mdepending on the site, mediate and regulate
nutrition absorption,1–5 secretion,5–7 physical barrier pro-
tection,8,9 transcellular transport,4,10 and environmental
sensing.11–15 At these sites, the plasma membranes of
epithelial cells, along with extracellular components (eg,
mucin), establish a barrier that prevents free exchange of
REV 5.6.0 DTD � JCMGH598 proof �
materials between the lumen and subepithelial tissues (ie,
the lamina propria). Nevertheless, a potential route between
adjacent epithelial cells must also be sealed. This requires
structural support by desmosomes and adherens junctions,
which link epithelial cells to one another, and tight junc-
tions, which limit paracellular flux. Importantly, tight junc-
tions are not absolute seals, but are selectively permeable
barriers that discriminate between water and solutes on the
basis of size and charge. Two distinct pathways across the
tight junction have been described and can be separately
regulated by immune signals. Conversely, changes in the
permeability of each pathway can differentially modulate
mucosal immune activation. Thus, the interaction between
tight junctions and mucosal immune system is a dynamic
conversation with signals being transmitted in both di-
rections. Finally, some forms of immune activation and
other stimuli reduce intestinal barrier function by directly
damaging the epithelium, thereby creating a potential flux
route termed the unrestricted pathway. It therefore stands
to reason that any analysis of signaling between the immune
system and epithelium must consider the means by which
luminal materials, including microbiota and their metabo-
lites, interact with the epithelium.
Impact of Mucosal Immune Regulation
on Tight Junction Permeability

The complete molecular composition and structure of
tight junctions remain to be defined. However, a great deal
of progress has been made over the half-century since tight
junctions were initially described.16–18 This includes dis-
covery of zonula occludens (ZO)-119 and the related cyto-
plasmic scaffolding proteins ZO-220 and ZO-321; cingulin22;
the tight junction associated Marvel proteins occluding,23
29 April 2020 � 5:22 pm � ce CJ
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tricellulin,24 and marvelD325,26; claudins27–31; and
others.32,33 Beyond these compositional proteins, the tight
junction is functionally and structurally linked to the
subcortical terminal web of actin microfilaments and the
perijunctional actomyosin ring.34–39

Solutes and water cross the tight junction by 2 distinct
pathways that can be distinguished on the basis of their
size-selectivity, charge-selectivity, and capacity
(Figure 1A).40,41 The pore pathway is a high-conductance
route that is charge-selective and extremely size-selective,
with an upper limit of 6- to 8-Å diameter. In contrast, the
less well-defined upper size limit of the lower conductance,
charge nonselective leak pathway has been estimated to be
w100-Å diameter.42 This model is consistent with in vivo
studies of mucosal permeability along the villus-crypt axis,
which identified distinct paracellular flux routes that could
be distinguished on the basis of size-selectivity; that work
concluded that 12-Å diameter pores were present in the
villus but that larger, 100- to 120-Å diameter pores popu-
lated the crypts.43
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The Pore Pathway
The pore pathway was identified in parallel by 2 sets of

experiments. Van Itallie et al44 analyzed flux of polyethylene
glycols across pig ileum and monolayers of Caco-2 intestinal
epithelial cells and 2 distinct clones of Madin-Darby canine
kidney (MDCK) cells; all demonstrated a size-restrictive
pore with a sharp size cutoff at w8-Å diameter. When the
2 MDCK lines, which had markedly different transepithelial
electrical resistances (TERs), were compared, increased flux
of 7-Å diameter polyethylene glycol correlated with
increased ion conductance (ie, reduced TER). Analysis of
tight junction protein expression showed that MDCK II, the
MDCK line with greater polyethylene glycol flux, expressed
more claudin-2 than the less permeable MDCK C7 line.
Expression of claudin-2 in MDCK C7 cells reduced TER and
enhanced paracellular flux of 7-Å diameter polyethylene
glycol, but not larger polyethylene glycols, consistent with
previous work showing that forced claudin-2 expression in
MDCK C7 monolayers increased Naþ, but not 4-kDa dextran,
flux.30 Van Itallie et al44 therefore concluded that claudin-2
expression increased the number of small tight junction
pores.

Concurrently, Weber et al45 treated T84 intestinal
epithelial cell monolayers with interleukin (IL)-13 and
found that this increased paracellular cation permeability
but did not affect flux of 4-kDa dextran. Further study
showed that IL-13 selectively induced claudin-2 expression
and that siRNA-mediated blockade of claudin-2 up-regula-
tion prevented IL-13-induced conductance increases.45 This
confirmed observations in MDCK C7 cells, as described
previously, and further demonstrated that IL-13 selectively
enhances paracellular permeability by the high conductance,
charge, and size-selective pore pathway.45

Further understanding of claudin-2-mediated pore
pathway conductance was provided by a series of muta-
genesis studies that identified specific residues that define
the claudin-2 pore.46–49 These were all within the first
REV 5.6.0 DTD � JCMGH598 proof �
extracellular loop of claudin-2 (Figure 1B) and could be
mapped to narrower and wider portions of the channel.
Subsequent patch clamp analyses demonstrated that
claudin-2 channels are actively gated and have single
channel conductances of w9 pA.50 Together, these data
indicate that, although claudin-2 channels are located be-
tween cells and are oriented parallel to plasma membranes,
they have significant similarities to traditional trans-
membrane ion channels.

The data described focus on claudin-2, a member of the
claudin protein family. Alternative splicing of the 27 claudin
genes allows expression of an even greater number of
proteins. Individual claudin proteins are differentially
expressed within specific tissues and cell types; the patterns
of expression are also modified during development and in
response to extracellular stimuli, including immune cells
and their products. In general, claudin proteins have been
subdivided into pore-forming and barrier-forming classes.
Claudin-2 is a pore-forming claudin, as are claudins 10a,
10b, 15, 16, and 17; these form channels that are either
cation- or anion-selective. Conversely, claudin-4, whose
expression in MDCK II monolayers reduces paracellular flux
of Naþ and 7.2-Å diameter polyethylene glycol. More
detailed discussion of claudin proteins, their functions, and
interactions are available.51–59

The tremendous efficacy of transmembrane ion channel
inhibitors in many disorders suggests that development of
specific means to modulate pore pathway tight junction
channels may also be therapeutic. One approach to claudin-
2 channel inhibition involves inhibition of casein kinase 2.
This results in dephosphorylation of serine 408 within the
C-terminal occludin tail and assembly of a tripartite complex
composed of occludin, ZO-1, and claudin-2.60 Incorporation
into this complex de-anchors claudin-2 at the tight junction
and disrupts channel function. For example, casein kinase-2
inhibition acutely reversed IL-13-induced increases in par-
acellular permeability of T84 monolayers.60 Although
translation to in vivo applications has not been reported and
will likely require more specificity than casein kinase-2 in-
hibition,61 these data indicate that molecular targeting of
protein interactions has the potential to modulate claudin
channels and pore pathway permeability.
The Leak Pathway
In contrast to the pore pathway, the specific sites of leak

pathway flux have not been defined. One possibility is that
transient breaks within tight junction strands allow mac-
romolecules (>8-Å diameter) to pass.62–64 This hypothesis
proposes that, as strands reform, macromolecules are
trapped in interstrand spaces until a break in the next
strand allows them to continue to move across the tight
junction. As discussed later, tricellular tight junctions, where
3 cells meet, have also been proposed as specialized sites of
paracellular, macromolecular flux.65

Despite lack of structural understanding, components of
the signal transduction machinery that regulates leak
pathway permeability have been studied extensively.66 The
most well-characterized of these is myosin light chain
29 April 2020 � 5:22 pm � ce CJ
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Figure 1. Mechanisms of paracellular permeability. (A) Two distinct routes are responsible for trans-tight junction flux. The
pore pathway, whose permeability is primarily regulated by the specific claudin proteins expressed, is exquisitely size-
selective and excludes molecules with diameters greater than 8 Å. The pore pathway is also charge selective, and for
example, claudin-2 specifically increases paracellular flux of cations (eg, Naþ), and water. The leak pathway allows macro-
molecular flux and is thought to have an exclusion limit of w100 Å. In some inflammatory conditions, occludin down-
regulation, including endocytic removal from the tight junction, leads to increased leak pathway permeability. A third route,
the unrestricted pathway, describes flux at sites of epithelial damage and is tight junction-independent.109,127 (B) Ribbon
diagram of claudins as viewed from the apical aspect of the tight junction. The pore formed by interactions between b-sheets
within extracellular loop 1 of claudins on adjacent cells54,128,129 is indicated. (C) Space-filling model of the 3 a-helices formed
by the coiled-coil occludin/ELL domain within the occludin cytoplasmic tail. Six adjacent lysines, including K433, form a basic
(blue) ZO-1 binding interface (arrow).78,130,131
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kinase (MLCK), which regulates paracellular permeability
during physiological, Naþ-nutrient cotransport.39,67

Expression of constitutively active MLCK is sufficient to in-
crease leak pathway permeability in vitro68 and in vivo.69

Based on the hypothesis that tight junction signaling mech-
anisms triggered by physiological stimuli mediate transduction
by pathophysiological stimuli, Zolotarevsky et al70 asked if
MLCK was involved in tight junction barrier loss induced by
tumor necrosis factor (TNF). They showed that a highly specific
MLCK inhibitor, PIK, was able to reverse both increasedmyosin
II regulatory light chain (MLC) phosphorylation and reduced
TER induced by TNF in vitro.70 Subsequent in vivo analyses
demonstrated that increases in intestinal epithelial MLC phos-
phorylation paralleled fluid accumulation during acute T-cell
activation-induced diarrhea.71 Pharmacologic or genetic
REV 5.6.0 DTD � JCMGH598 proof �
intestinal epithelial MLCK inhibition prevented these TNF-
induced increases in MLC phosphorylation, luminal fluid accu-
mulation, and albumin (ie, leak pathway) permeability.71

Remarkably, the distribution ofmost tight junction proteins
was unaffected by T-cell activation.71,72 Intestinal epithelial
occludinwas, however, internalized in amanner that correlated
directly with intestinal barrier loss and could be blocked by
MLCK inhibition (Figure 2). This TNF-induced occludin endo-
cytosis occurred via caveolae and was prevented by caveolin-1
knockout, which blocked leak pathway permeability increases
without affecting TNF-induced MLC phosphorylation
(Figure 2). These data, therefore, established occludin endo-
cytosis as a marker of TNF-induced, MLCK-mediated increases
in leak pathway permeability. Nevertheless, the contributions
of occludin to barrier function have been questioned.73,74
352
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Figure 2. Acute, TNF-induced barrier loss is regulated by MLCK-dependent, caveolar occludin endocytosis. (A) Sys-
temic T-cell activation, induced by anti-CD3 antibody treatment, causes acute, TNF-dependent diarrhea.71,80,132 After 3 hours,
jejunal tissues were stained for occludin (green) and nuclei (blue). Anti-CD3 treatment induced occludin endocytosis in wild-
type (WT) mice. In contrast, mice lacking long MLCK (MLCKKO) were resistant to anti-CD3-induced occludin endocytosis. (B)
WT and Cav1-/- mice were injected with vehicle or recombinant TNF to induce diarrhea similar to that triggered by systemic T-
cell activation. Images show jejunal tissues labeled for occludin (green), F-actin (red), and nuclei (blue). Caveolin-1 is required
for TNF-induced occludin internalization. (C) Leak pathway permeability was assessed by blood-to-intestinal lumen flux of
labeled albumin. Both anti-CD3 and TNF treatment increased leak pathway permeability. These increases were, however,
blocked in MLCKKO and caveolin-1 knockout mice. (D) Anti-CD3- and TNF-induced leak pathway permeability increases
correlated with reversal of net fluid flow from absorption to secretion. Water absorption was maintained in MLCKKO and
caveolin-1 knockout mice. Data from Clayburgh et al71 and Marchiando et al.72
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Transgenic EGFP-occludin overexpressionwithin the intestinal
epitheliummarkedly attenuated TNF-induced increases in leak
pathway permeability and restored net fluid absorption,
thereby demonstrating that occludin is a critical leak pathway
regulator.72

Although occludin knockout mice have been reported to
have normal intestinal barrier function,73,74 male sterility
and deafness suggest that occludin is critical to epithelial
barrier function within the testes and cochlear hair
cells.73,75 Consistent with this, occludin overexpression
enhanced barrier function of MDCK monolayers,76 and
studies of both MDCK and Caco-2 occludin knockdown lines
demonstrated increased paracellular permeability to mac-
romolecules with diameters up to w100 Å.42,77
REV 5.6.0 DTD � JCMGH598 proof �
Occludin-deficient MDCK and Caco-2 epithelial monolayers
are resistant to TNF-induced barrier loss.42,72,76 This was not
causedby a failureof signal transduction, becauseTNF-induced
MLC phosphorylation was intact in occludin-deficient Caco-2
cells.42 Further analysis showed that the coiled-coil occludin/
ELL domain within the cytoplasmic C-terminal occludin tail is
required for TNF-induced permeability increases and that this
depends on K433, which forms part of the occludin binding
surface for ZO-1.42,78 This interaction with ZO-1may be central
to MLCK-dependent leak pathway regulation, because ZO-1,
but not occludin, binds directly to F-actin.79 Consistent with
this idea, the actin binding regionof ZO-1 is required for in vitro
barrier regulation by MLCK37 and ZO-1 knockdown increases
leak pathway permeability of epithelial monolayers.63
29 April 2020 � 5:22 pm � ce CJ
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Similar to TNF, the TNF core family member LIGHT
(lymphotoxin-like inducible protein that competes with
glycoprotein D for herpes virus entry on T cells) and IL-1b
trigger MLCK activation, occludin internalization, and
increased leak pathway permeability in vitro and
in vivo.80–84 In contrast to TNF, LIGHT did not cause net
fluid secretion (ie, diarrhea). This difference reflects the
ability of TNF, but not LIGHT, to down-regulate Naþ ab-
sorption by Naþ/Hþ exchanger isoform 3.80 Remarkably,
ongoing Naþ/Hþ exchanger isoform 3–mediated trans-
cellular Naþ transport supported increased fluid absorption
in LIGHT-treated mice, demonstrating the passive nature of
paracellular flux. In this case, the gradient created by Naþ/
Hþ exchanger isoform 3–mediated Naþ absorption trans-
port dictated the direction of paracellular water flow.
Regulation intestinal and renal paracellular transport by
transcellular transport and, conversely, support of trans-
cellular transport by paracellular flux, have also been
described in the absence of disease.85–88

Beyond the focus on occludin and ZO-1, some authors
have hypothesized that flux of macromolecules via the leak
pathway occurs at tricellular junctions.65 This idea is
consistent with the observation that tricellulin over-
expression reduces paracellular macromolecular flux65 and
morphologic analyses demonstrating a unique tight junction
structure at tricellular contacts89,90 that is disrupted in
tricellulin knockout mice.91 The observation that high-dose
IL-13, 100- to 1000-fold greater than that required for
claudin-2 up-regulation, reduced tricellulin expression, and
increased 4-kDa dextran permeability could lend further
support to the hypothesis that tricellulin seals the leak
pathway.45,92 It must, however, be recognized that, at these
doses, IL-13 induces apoptosis.93

Contributions of tricellulin to increased leak pathway
permeability may be related to occludin endocytosis,
because occludin loss causes tricellulin to expand its dis-
tribution to include bicellular tight junction regions.94,95

This relationship is made more complex by the observa-
tion that a tricellulin-derived peptide that displaces tri-
cellulin from tight junctions and increases macromolecular
paracellular flux also causes occludin internalization.96 The
actin cytoskeleton, ZO-1, and at least 2 members of the tight
junction associated Marvel proteins family, occludin and
tricellulin, are therefore implicated in leak pathway regu-
lation. Further work is needed to identify the anatomic sites
and molecular mechanisms of leak pathway flux.

Impact of Tight Junction Permeability
on Mucosal Immune Regulation

For many years conventional wisdom has dictated that
increased intestinal permeability is a cause of disease. This
belief was based on intuition; observations that massive
barrier loss, such as the extensive epithelial damage caused
by dextran sulfate sodium (DSS), could cause experimental
colitis; and a correlation between severity and the magni-
tude of intestinal barrier loss in other disorders. However,
data refuting this concept were reported more than 30 years
ago. These data demonstrated that increased intestinal
REV 5.6.0 DTD � JCMGH598 proof �
permeability was present in a subset of entirely healthy
relatives of patients with Crohn’s disease.97 Despite being
reproduced in many studies and linked specifically to NOD2
risk alleles,98,99 this documentation of increased intestinal
permeability in healthy subjects has not received wide-
spread recognition.

Studies in mice confirm the conclusion that intestinal
barrier defects that fall short of substantial mucosal damage
are insufficient to cause overt disease. These include ana-
lyses of junctional adhesion molecule-A (JAM-A; F11r)
knockout mice demonstrating the absence of spontaneous
disease despite increased intestinal permeability100,101 and
increased intestinal epithelial proliferation (a sensitive
marker of epithelial damage).102 Transgenic mice express-
ing constitutively-active MLCK within the intestinal epithe-
lium were also healthy despite increased leak pathway
permeability.69 Nevertheless, both JAM-A knockout and
constitutively active MLCK transgenic mice displayed low-
grade mucosal immune activation characterized by
increased numbers of lamina propria CD4 T cells and IgA-
producing plasma cells.69,100,103,104 JAM-A knockout mice
were also hypersensitive to DSS-induced colitis,103 which
was further exacerbated by elimination of transforming
growth factor-b-producing CD4 T cells or knockout of the
IgA heavy chain gene Igha.103 An adaptive immune response
characterized by increased transforming growth factor-b
and IgA production may therefore partially compensate for
intestinal barrier loss as a consequence of JAM-A deletion.
Constitutively active MLCK-induced permeability increases
also activated mucosal immunity that was sufficient to limit
acute translocation of pathogenic bacteria (Salmonella
typhimurium) and parasites (Toxoplasma gondii).104 This
protection required a complex gut microbiome and IL-17-
producing CD4 T cells but was not dependent on
increased IgA production.104

Although these studies of mice with genetic defects
demonstrate mucosal immune activation that partially
compensates for intestinal barrier loss, recent detailed an-
alyses of have identified more subtle changes. This includes
alterations of the gut microbiome, spontaneous behavior,
visceral sensitivity, and neuronal activation within stress-
response regions of the brain in constitutively active
MLCK transgenic mice.105 Although further study is needed,
these data may be provisionally interpreted as evidence that
modest increases in intestinal permeability can impact the
gut-brain axis and trigger phenotypically diverse responses.
The MLCK-Regulated Leak Pathway as an
Effector in Immune-Mediated Disease

In addition to the gut microbiome, T-cell transfer colitis
depends on the absence of regulatory T cells.106,107 Thus,
although outstanding for many purposes, the absence of
regulatory T cells prevents this model from providing an
unbiased picture of the evolution of mucosal immunity in
chronic disease. To better define this, Nalle et al108–110

studied the contributions of intestinal barrier defects to
development and progression of graft-versus-host disease
(GVHD), a major complication of bone marrow/
29 April 2020 � 5:22 pm � ce CJ
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hematopoietic stem cell transplantation (BMT). At first, they
focused on contributions of barrier defects to GVHD
initiation.108

As in humans, BMT in mice requires preconditioning to
eliminate the endogenous hematopoietic stem cells. In most
mouse studies this is accomplished by irradiation, which
induces prominent tissue of bone marrow and intestinal
epithelium, 2 of the most rapidly proliferating cellular
compartments. It is therefore not surprising that unre-
stricted pathway permeability was increased in the week
after preconditioning. Intestinal permeability continued to
increase after major antigen mismatch BMT from BALB/c
donors into C57BL/6 (B6) recipients.108 In contrast, intes-
tinal permeability normalized in mice receiving syngeneic or
minor antigen mismatch BMT from B6 or 129S donors,
respectively. After a lag period of several weeks, intestinal
permeability then began to increase in mice that had
received minor antigen mismatch BMT. Thus, major antigen
mismatch GVHD was associated with a monophasic increase
in intestinal permeability, whereas intestinal barrier defects
were biphasic after minor antigen mismatch BMT.

Differentiation between increased intestinal perme-
ability as a cause or effect of GVHD has not been possible,
because the gut is a target of preconditioning damage and
disease. To overcome this, Nalle et al108–110 used immuno-
deficient (Rag1-/-) mice as BMT recipients. Mice that
received pre-BMT irradiation developed GVHD as expected,
but neither minor antigen nor major antigen mismatch BMT
was sufficient to cause GVHD in the absence of pre-
conditioning. Flow cytometric analyses excluded rejection of
donor T cells in nonirradiated mice as a trivial explanation
for the lack of disease but did demonstrate that irradiation
effectively cleared endogenous natural killer (NK) cells.
Further study showed that recipient mice in which NK cell
function had been eliminated by anti-NK antibody-mediated
depletion or perforin knockout developed GVHD after major
antigen mismatch BMT. Thus, intestinal barrier loss was not
required for major antigen mismatch GVHD to develop.

In contrast to mice that received major antigen mismatch
BMT, minor antigen mismatch BMT was unable to cause
GVHD despite NK cell depletion or perforin knockout.108

This could be overcome by DSS pretreatment, to induce
colonic damage, or by intraperitoneal lipopolysaccharide (ie,
endotoxin) administration.108 Thus, intestinal damage, or at
least systemic exposure to bacterial products, is required for
the development of minor antigen mismatch GVHD.108

Moreover, low-grade GVHD developed in constitutively
active MLCK transgenic Rag1-/- mice that received minor
antigen mismatch BMT and NK cell depletion without irra-
diation, DSS, or lipopolysaccharide (unpublished data, Nalle
and Turner). Thus, initiation of GVHD following a modest
immune stimulus (ie, minor antigen mismatch BMT) re-
quires a second signal provided by intestinal barrier loss.
This can be overcome by strong immune stimuli (ie, major
antigen mismatch).108

The biphasic nature of barrier defects in minor antigen
mismatch GVHD prompted further analysis.110 The first
phase of intestinal permeability increases was caused by
irradiation and mucosal damage. However, the second phase
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of barrier loss began in the interval between recovery from
irradiation and development of clinically evident disease. By
2 weeks after BMT, intestinal epithelial MLC phosphoryla-
tion was markedly increased in mice that received minor
antigen mismatch allogeneic BMT relative to those that
received syngeneic BMT or control mice that were neither
irradiated nor transplanted (Figure 3A).110 Increased MLC
phosphorylation was associated with transcriptional MLCK
up-regulation within intestinal epithelia, suggesting that
that MLCK-dependent increases in tight junction perme-
ability might be responsible for the second phase of barrier
loss in mice. Consistent with this, intestinal permeability to
4 kDa dextran was increased at 5 weeks after allogeneic
(minor antigen mismatch) BMT in B6 mice, but not in B6
mice lacking long (nonmuscle) MLCK.110 These MLCK
knockout mice were also protected from GVHD overall on
the basis of serum cytokine elevation (Figure 3B), histologic
damage, weight loss (Figure 3C), and survival. Although long
MLCK is expressed in other cell types, including endothelial
cells, endothelial leakage persisted in the long MLCK
knockout mice, indicating that vascular barriers were not
protected by long MLCK knockout. More importantly,
complementation of long MLCK knockout by intestinal
epithelial-specific constitutively active MLCK restored
sensitivity to disease, thereby demonstrating that intestinal
epithelial MLCK is critical to disease progression. The
observation that MLCK expression and MLC phosphoryla-
tion are increased in intestinal epithelia of patients with
GVHD, relative to healthy control subjects, suggests that the
same mechanisms of leak pathway regulation contribute to
pathogenesis of human disease.110

Tissue analysis showed that, in addition to reduced
damage, infiltration by terminally differentiated cytolytic
(CD8þ/granzyme Bþ) T cells was markedly reduced in
MLCK knockout allogeneic BMT recipients (Figure 3D). To
determine whether these were antigen-specific, pathogenic
T cells or mere bystanders, a different GVHD model, using
B6 transgenic mice expressing membrane-bound ovalbumin
on the surface of all cells was used. These mice received a
syngeneic BMT that included a small number of splenocytes
from OT-I transgenic mice, whose CD8 T cells recognize
ovalbumin.110 When analyzed in mesenteric lymph nodes,
granzyme B expression within antigen-specific (OT-I) CD8 T
cells was markedly reduced in MLCK knockout, relative to
wild-type, BMT recipients. In contrast, granzyme B expres-
sion in OT-I CD8 T cells from nonmesenteric peripheral
lymph nodes and spleen was similar in wild-type and long
MLCK knockout mice. This indicates that MLCK-dependent
intestinal barrier loss promotes local, terminal differentia-
tion of antigen-specific T cells during evolution of GVHD.
Remarkably, analysis of the nonantigen-specific CD8 T cells
also showed increased numbers with granzyme B expres-
sion in mesenteric lymph nodes but no other sites. There-
fore, intestinal barrier loss drives GVHD progression by
promoting terminal differentiation of polyclonal populations
of nonantigen-specific, cytolytic CD8 T cells (Figure 3E).

These data suggest that MLCK-mediated, leak pathway
barrier loss may make similar contributions to immune
activation in other diseases, such as inflammatory bowel
29 April 2020 � 5:22 pm � ce CJ
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Figure 3. Intestinal epithelial MLCK-dependent leak pathway permeability increases drive systemic GVHD. (A) Phos-
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disease (IBD), in which pathogenesis is not driven by a
single antigen. Consistent with this, immune-mediated
experimental IBD (T-cell transfer colitis) was more severe
in constitutively active MLCK transgenic mice.69 Conversely,
REV 5.6.0 DTD � JCMGH598 proof �
knockout mice lacking long MLCK were protected from
experimental IBD.111 As in experimental GVHD, this pro-
tection was eliminated by intestinal epithelial-specific
expression of constitutively active MLCK.111 However, in
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contrast to GVHD, experimental IBD ultimately progressed
in the MLCK knockout mice. Onset of disease in the
knockout mice correlated temporally with intestinal
permeability loss caused by epithelial apoptosis.111 These
data indicate that intestinal barrier loss is critical to evolu-
tion of experimental IBD and that, like GVHD, disease
amelioration by inhibition of MLCK-mediated leak pathway
permeability increases may be overcome by strong immune
stimuli.

Although these data suggest that MLCK inhibition
might be an effective therapy in immune-mediated intes-
tinal disease, it is important to remember that MLCK
serves other critical epithelial functions, such as migration
and wound repair.112,113 Moreover, because the gene that
encodes epithelial MLCK also encodes smooth muscle
MLCK, any enzymatic inhibitor of epithelial MLCK would
inhibit smooth muscle contraction and in hypotension and
intestinal obstruction.114 Finally, available MLCK enzy-
matic inhibitors are unable to discriminate between
nonmuscle, smooth muscle, skeletal muscle, and cardiac
MLCK isoforms. Thus, enzymatic MLCK inhibition is not a
feasible approach to therapy. However, recent work has
shown that a specific epithelial MLCK splice variant, long
MLCK1, contains a unique domain that is required for
effective recruitment to the perijunctional actomyosin ring
and MLCK-dependent leak pathway regulation.38 A small
molecule inhibitor that blocked long MLCK1 recruitment
to the perijunctional actomyosin ring and prevented
subsequent increases in leak pathway permeability
without inhibiting MLCK enzymatic activity has recently
been described.38 This molecule, termed Divertin, because
it diverts long MLCK1 from the perijunctional actomyosin
ring, was remarkably effective in a variety of in vitro and
in vivo IBD models and, in T-cell transfer colitis, was
more effective than anti-TNF.38 Although only a single
report of molecule that has not undergone complete
pharmacologic analysis, this striking result suggests that it
may be possible to target the leak pathway without sys-
temic toxicity.
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Consequences of Pore Pathway Regulation in
Disease

Several studies have linked claudin-2 expression to
MLCK-dependent barrier regulation.45,111,115 For example,
constitutively active MLCK expression within the intestinal
epithelium led to increased claudin-2 expression and cation-
selective, pore pathway permeability.45 This may have been
caused by increased IL-13 production in constitutively
active MLCK transgenic mice. Furthermore, in experimental
IBD, claudin-2 up-regulation was blocked in MLCK knockout
mice but restored by complementation with constitutively
active MLCK.111 Finally, a study of claudin-2 knockout mice
reported increased TNF-induced nuclear factor-kB activa-
tion and MLCK transcription in vivo.115 One interpretation
of these data could be that claudin-2 is a downstream
effector of MLCK-induced barrier loss in disease. Unfortu-
nately, studies of immune-mediated colitis in claudin-2-
deficient mice have not been reported.
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Intestinal epithelial claudin-2 expression can be
increased by IL-13, IL-22, and IL-6 and a broad range
of other stimuli.92,115–125 The impact of claudin-2 up-
regulation on disease progression is, however, incompletely
defined. One study showed that transgenic mice over-
expressing human claudin-2 within the intestinal epithelium
were protected from DSS-induced colitis.126 These mice,
however, had other abnormalities, including marked up-
regulation of epithelial proliferation, consistent with dam-
age, and increased permeability to 4-kDa dextran, which
cannot be accommodated by claudin-2 channels.126 More-
over, the mechanism of this protection may relate more to
increased water content and reduced DSS concentration in
the distal colon than a specific effect of claudin-2. Consistent
with this, fecal water and Naþ were increased in a different
transgenic mouse expressing EGFP-tagged mouse claudin-
2.118 Conversely, DSS colitis is more severe in claudin-2
knockout mice.115

Claudin-2 knockout and intestinal epithelial-specific
transgenic mice have been studied carefully in the context
of infectious colitis.118 This investigation was prompted by
results of in vivo, size-specific permeability assays, using
creatinine, 4-kDa dextran, and 70-kDa dextran, that showed
increased pore pathway permeability within 2 days of Cit-
robacter rodentium infection (Figure 4A and B). Leak
pathway and unrestricted pathway permeabilities were
increased later time. Among all claudins, only claudin-2
expression was up-regulated within 2 days of infection
(Figure 4C). This was associated with increased mucosal IL-
22 but no changes in other cytokines. In vitro analysis of
organoid cultures demonstrated that IL-22 was able to
specifically up-regulate claudin-2. Moreover, IL-22 neutral-
izing antibodies prevented claudin-2 up-regulation at this
early time after infection.118

To better understand the impact of claudin-2 up-
regulation on infectious colitis, wild-type, claudin-2
knockout, and claudin-2 transgenic mice were compared. C
rodentium–induced colitis was far more severe in claudin-2
knockout mice, as demonstrated by weight loss, tissue
damage, proinflammatory cytokine expression, and
numbers of mucosal-adherent bacteria. Fecal C rodentium
shedding was prolonged in claudin-2 knockout mice, sug-
gesting that claudin-2 promotes pathogen clearance.118 To
test the hypothesis that claudin-2 primarily drives pathogen
clearance by facilitating paracellular water and Naþ efflux
into the lumen, polyethylene glycol was added to the
drinking water of all 3 genotypes. Because polyethylene
glycol cannot be absorbed, this creates an osmotic force that
draws water and Naþ into the colonic lumen. This maneuver
rescued claudin-2 knockout mice such that their disease
was similar in magnitude to that of wild-type or claudin-2
transgenic mice, as assessed by histopathology, cytokine
production, and mucosal-associated C rodentium.118 The
protection afforded by claudin-2 up-regulation therefore
depends on claudin-2-mediated water efflux (Figure 4D).
How this water efflux promotes pathogen clearance has yet
to be determined. It also remains to be determined whether
increased claudin-2 expression impacts disease progression
of inflammatory disorders, such as IBD.
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Figure 4. IL-22-induced claudin-2 up-regulation increases pore pathway permeability to promote intestinal pathogen
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Tsai et al.118
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Conclusions
There has been a tremendous expansion of the under-

standing of tight junction permeability, the biophysics of
distinct tight junction flux pathways, and regulatory mech-
anisms responsible for tight junction regulation in recent
years. The field is also beginning to realize the long sought-
after goal of therapeutically modulating tight junction
REV 5.6.0 DTD � JCMGH598 proof �
barrier function. Although many challenges remain, the next
few years promise extraordinary advances.
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