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propria, which is composed of two or three layers of smooth
muscle and is home to the myenteric plexus (see Chapters 2
and 6). In most instances, gastrointestinal organs are encased
by an outermost delicate layer of fibrofatty tissue, the serosa,
encircled by a continuous layer of mesothelial cells. In areas
where no serosa exists, as in portions of the esophagus and in
the distal colorectum, fibrofatty tissues interface with the
external portion of the muscularis propria. These organs are
said to have an adventitial, rather than a serosal, encasement.

Forceps biopsies retrieved endoscopically usually go no
deeper than the muscularis mucosae, although thin wisps 
of submucosal tissue may occasionally be present. Suction
biopsies more consistently penetrate the submucosa, although
only the most superficial portion of the submucosa is obtained.
Deeper portions of the wall appear in endoscopic samples by
accident, such as in an aggressive snare of a sessile mucosal
lesion, or by intention, as in endoscopic mucosal resection
(see Chapter 137).

Similar to the gross anatomy, the microscopic anatomy of
the gastrointestinal tract varies along its length. A simple
columnar epithelium lines the stomach, small intestine,
colon, pancreatobiliary ducts, and exocrine pancreas. In con-
trast, the oral cavity, esophagus, and anus are lined by a
nonkeratinizing, stratified squamous epithelium that is cap-
able of withstanding the mechanical stresses of swallowing
and defecation but plays no role in transepithelial transport.
The three-dimensional structure of epithelia also exhibits
significant variation within the gastrointestinal tract, such as
the prominent mucosal folds and villi in the small intestine
(Fig. 8.1), the lobular organization of the exocrine pancreatic
acini (Chapter 67), and the deep epithelial extensions into
salivary and Brunner glands in the esophagus and duode-
num, respectively. The liver, which lacks a single large lumen,
is composed primarily of hepatocytes. These possess only a
small apical (canalicular) surface and lack complex, deeper
cell layers; capillaries and hepatocytes are separated by a thin
basement membrane in the space of Dissé (see Chapter 79).

All cavities within the alimentary tract, from the small ducts
and acini of the pancreas to the gastric lumen, are lined by
sheets of polarized epithelial cells. Common to all of these
epithelia is the ability to create selective barriers that separate
lumenal and tissue spaces. Most epithelia are also able to
direct vectorial transport of solutes and solvents. These
essential functions are based on the structural polarity of
individual cells, the complex organization of membrane
domains, cell–cell and cell–substrate interactions, and integ-
ration with other cell types. This chapter reviews intestinal
wall structure and examines how mucosal functions are sup-
ported by the organization of the gut and the biological prop-
erties of the epithelial barrier and epithelial transport. More
detailed discussions of epithelial transport and nutrient pro-
cessing can be found in Chapters 13–21.

Organization of the gut wall

The relation of the epithelial layer to other components of
the gut wall is shown in Fig. 8.1. Four principal layers exist:
mucosa, submucosa, muscularis propria, and serosa or
adventitia. The mucosa consists of the epithelium, an under-
lying layer of loose connective tissue carrying nerves and
vessels (i.e., lamina propria), and a thin layer of smooth mus-
cle (i.e., muscularis mucosa). The mucosa also contains an
array of lymphocytes, mast cells, macrophages, and, in dis-
ease states, polymorphonuclear leukocytes, all of which are
capable of modulating epithelial function.

An underlying layer of fibroconnective tissue called the
submucosa, which contains nerves, vessels, and lymphatics,
supports the mucosa. The submucosa rests on the muscularis
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Despite these complexities of regional specialization, central
structural features critical to epithelial function are present
throughout the gastrointestinal tract.

Organization of epithelial cells and sheets

To function properly as a barrier, epithelial cells must assem-
ble into a multicellular sheet. This is a complex task that
requires individual cells to establish a uniformly oriented
polarity; to form intercellular junctions; and to develop stable
interactions with the basement membrane (Fig. 8.2).

The need for cell polarity
A central function of many gastrointestinal epithelia is the
vectorial transport of solutes and solvents. For example, 
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parietal cells are polarized to effect acid secretion into the
lumen (see Chapter 13). Imagine the ensuing havoc if acid
were inadvertently secreted into the interstitium. Absorptive
villous enterocytes of the small intestine are specialized to
accomplish vectorial transport of ions, nutrients, and water
from the lumen to the interstitium (Fig. 8.3) by expressing
specific transporters within the apical (lumenal), but not
basolateral, membrane domain [1–3]. These transporters
often rely on a lumenal Na+ concentration that is much
higher than the intracellular Na+ concentration required 
for cotransport of sugars, amino acids, ions, bile salt, and
xenobiotics. In general, the absorbed solutes exit the cytosol
by way of Na+-independent facilitated transporters present in
basolateral, but not apical, membranes, resulting in efficient
transcellular transport. The high extracellular and low intra-
cellular Na+ concentrations that provide energy for this 
system are maintained by the exclusively basolateral Na+,K+-
ATPase that pumps Na+ out of the cell in exchange for K+.
Thus, the net result of apical Na+-coupled transport is vec-
torial transport of both the specific solute and Na+ from the
lumen to the interstitium. The polarized distribution of these
three classes of transport proteins – apical Na+-coupled trans-
porters, basolateral Na+-independent transporters, and the
basolateral Na+,K+-ATPase – is critical for active transepithe-
lial transport. Note that the deposition of osmotically active
molecules in the subepithelial interstitial space provides the
driving force for passive water absorption. This integration 
of active transcellular and passive, primarily paracellular,
transport explains the improved efficacy of oral rehydra-
tion solutions supplemented with Na+ and carbohydrates
[4,5]. Although details of these transport processes will be
addressed in further detail, this outline of vectorial trans-
port should emphasize that polarized distribution of surface
membrane components within individual cells is essential to
epithelial function. It should also be obvious that were the
entire epithelial sheet not polarized uniformly, i.e., with all
cells polarized in the same orientation, adjacent cells could
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negate one another’s contributions, making net transport
impossible. Thus, in addition to polarization of individual
cells, it is critical that all cells within an epithelium respond 
to common cues to generate a unified, polarized epithelial
sheet. 

Cues to trigger polarization
The spatial cues that induce initial cell polarization and main-
tain it have generally been thought to require contact with
the extracellular matrix and with other cells. For example,
the interaction between the epithelial Ca2+-dependent
adherens junction protein, E-cadherin, on adjacent cells is a
critical trigger for polarization. E-cadherin is concentrated at
the adherens junction, the basal-most aspect of the apical
junction complex (Fig. 8.2), where, through cytoplasmic
linker proteins (e.g., α-actinin and α- and β-catenins), it 
is coupled to a perijunctional ring of actin and myosin
filaments [6,7]. In addition to E-cadherin-mediated inter-
cellular adhesion, interactions with matrix components
through integrins, heparan sulfate proteoglycans, and other

membrane proteins are also important in inducing polariza-
tion and maintaining differentiation [8–10].

The discovery of polarity genes encoding Par proteins 
in Caenorhabditis elegans and Drosophila has facilitated the
identification of mammalian homologues, complexes of
which define epithelial apical and basolateral plasma 
membrane domains [11,12]. Not surprisingly, Par protein
mutations have been linked to disease. For example, many
individuals with Peutz–Jeghers syndrome exhibit mutation
of LKB1, the mammalian homologue of the C. elegans protein
Par-4 [13]. LKB1 is a serine/threonine kinase that is acti-
vated by the STRAD adapter protein, which may also be
mutated in Peutz–Jeghers syndrome [14]. STRAD-mediated
LKB1 activation triggers early cell polarization in epithelial
cells despite the absence of intercellular junctions [15]. One
mediator of LKB1-initiated epithelial polarization may be
AMP-activated protein kinase, which is activated by LKB1
and plays an important role in maintaining cellular energy
balance [16].

The mutation of β-catenin that is often observed in human
colorectal cancers and the increased risk of malignancy asso-
ciated with Peutz–Jeghers syndrome suggest that disrupted
cell polarization may contribute to neoplasia. The association
of transcription factor-dependent E-cadherin repression 
with the epithelial–mesenchymal transition that is typical of
invasive cancer [17] and the strong correlation between the
loss of E-cadherin expression and the invasive phenotype 
of many human gastrointestinal neoplasms [18,19] further
support this concept. Conversely, loss of E-cadherin allows
unbound β-catenin to activate gene transcription. Cytosolic
β-catenin activity is normally down-regulated by the adeno-
matous polyposis coli (APC) protein, explaining why muta-
tions in APC lead to enhanced β-catenin activity and growth
of adenomas in patients with familial adenomatous poly-
posis, as well as in those with spontaneous somatic APC
mutations [20,21]. Clearly many functional connections ex-
ist between cell adhesion, polarity, growth, and tumor inva-
sion (see detailed discussions in Chapter 24). 

Structure of intercellular junctions
All polarized epithelia share a set of distinct intercellular
junctions. These include, from the lumenal aspect, the tight
and adherens junctions, which form continuous circum-
ferential contacts, and, below these, desmosomes and gap
junctions, which form macular or spot contacts. Together
these junctions maintain polarity, seal the paracellular space,
provide intercellular communication, and stabilize the
monolayer.

A critical event in the generation and maintenance of cell
polarity is the assembly of the apical junctional complex,
which is composed of the adherens junction and the tight
junction. The latter defines the boundary between apical and
basolateral membrane domains; it prevents the mixing 
of transmembrane proteins and outer leaflet membrane

MLC

MLCK

P

P

Tight

junction

Na+

Glucose

Na+ glucose

H2O
K+

Na+/K+

ATPase

SGLT1 NHE3

GLUT2

GlucoseNa+ Na+

H+

Na+

Na+

Glucose

H2O      Solutes

Glucose

Figure 8.3 Coordination of transcellular and paracellular absorption of

water, nutrients, and ions. The polarized delivery of SGLT1, GLUT2, and

Na+,K+-ATPase to the appropriate apical (SGLT1) and basolateral (GLUT2

and Na+,K+-ATPase) membranes is essential for efficient vectorial glucose

absorption. Research has shown that SGLT1 activation also stimulates apical

NHE3-mediated Na+ absorption, thereby linking these absorptive processes.

Incompletely defined downstream signaling events subsequently activate

myosin light chain kinase (MLCK). This, in turn, phosphorylates MLC and

increases paracellular permeability, thereby linking transcellular and

paracellular absorption.

9781405169110_4_008.qxd  8/28/08  7:11 PM  Page 171



lipids between these domains. When examined by electron
microscopy, tight junctions appear as 100- to 300-nm-deep
zones where adjacent cells closely abut (Fig. 8.4). Series of
punctate fusions or “kisses” between these plasma mem-
branes form a seal between adjacent cells. These fusion sites
are arrayed in a linear anastomosing fashion around the cell
and correspond to the net-like series of grooves and strands
seen in freeze-fracture replicas of epithelial cells (Fig. 8.4).
The strands are formed by members of the claudin family of
tetraspanning cell–cell adhesion proteins [22], which make
contact in the intercellular space and define the ion selectiv-
ity of flow across the tight junction [23–25]. 

Another tetraspanning membrane protein, occludin, is
present in tight junction strands, in intracellular vesicles,
and, in some cell types, along the lateral membranes.
Although occludin knockout mice are viable and appear to
have intact tight junctions [26], abundant in vitro and in vivo
data suggest that occludin plays a critical role in the organiza-
tion and regulation of tight junctions [27–32] and, poten-
tially, in the maintenance of the differentiated epithelial
phenotype [33]. Like occludin, several members of the junc-
tional adhesion molecule (JAM) family of proteins localize 
to tight junctions and along lateral membranes. JAM pro-
teins appear to be necessary for the transepithelial migration
of inflammatory cells [34–36]. A variety of other transmem-
brane proteins, including the coxsackievirus and adeno-
virus receptor [37,38], are also sequestered within tight 
junctions. 

The cytoplasmic face of tight junctions contains a large
number of peripheral membrane proteins that fall into 
different categories. Various peripheral membrane proteins
link transmembrane proteins to the actin cytoskeleton, 
help to establish cell polarity, define specialized zones for
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vesicle targeting, or regulate gene transcription. An extensive
review of these proteins is beyond the scope of this chapter. 

Of special interest are the numerous proteins, such as 
ZO-1, with multiple protein interaction (PDZ) domains [39].
Although incompletely understood, ZO-1 appears to play 
a unique role in tight junction assembly and regulation.
Initially recruited to nascent adherens junctions through
interactions with α-catenin, ZO-1 is present from the earliest
stages of tight junction assembly, prompting the suggestion
that ZO-1 defines the site of tight junction assembly. A report
that tight junction assembly is delayed in ZO-1 knockout
epithelial cells gives credence to this idea [40]. ZO-1 may also
serve as a scaffold for the assembly of multiprotein com-
plexes. For example, ZO-1 interacts with claudin proteins,
occludin, and actin filaments [41–43] and binds to other
peripheral membrane proteins, such as the myosin-binding
protein cingulin [44]. Most striking, ZO-1 and the related
protein ZO-2 can each determine whether and where
claudin polymerization occurs [45]. This multitude of 
protein–protein interactions has led to the hypothesis that
the tight junction itself is composed of a stable multiprotein
complex. However, measurement of unique rates of pro-
tein exchange within the tight junction, as well as between
junctional and cytoplasmic pools, contradicts this appealing
concept [46]. 

Directly below the tight junction lies the adherens (or
intermediate) junction, in which the lateral membranes of
adjacent cells lie parallel to each other and adhere by means
of E-cadherin. At this site, the perijunctional ring of actin and
myosin interacts with E-cadherin through α-actinin, vin-
culin, and α- and β-catenin. This perijunctional actomyosin
ring is also essential to the maintenance of the tight junction
[29,47]. Directly below the adherens junctions are desmo-
somes (Fig. 8.2). Distant relatives of the cadherin family,
desmogelins and desmocollins, form cell contacts at desmo-
somes. These transmembrane glycoproteins associate with
intermediate filaments rather than with actin filaments.
Consequently, they anchor the cytokeratin-based cytoskel-
eton between neighboring cells and provide resistance to
mechanical stress. Keratin gene mutations in some patients
with inflammatory bowel disease and the spontaneous
chronic colitis that develops in keratin-8 knockout mice
emphasize the importance of keratin proteins in epithelial
function [48,49]. 

To varying degrees, all epithelial cells of the gastrointest-
inal tract express gap junctions. At the site of the gap junction
the cytoplasm of adjacent cells is in physical continuity
through transmembrane channels formed by members of 
the connexin protein family [50]. Six connexin molecules
assemble on each membrane to form a channel and, by
adhering across the paracellular space, they create a lumen
isolated from the extracellular space. Signaling molecules up
to about 1500 Da (e.g., Ca2+, inositol triphosphate) and small
nucleotides can diffuse freely between cells and coordinate

Figure 8.4 Tight junction ultrastructure. Electron microscopic appearance

of the tight junction of a small intestinal absorptive epithelial cell. The

transmission electron micrograph (left) shows that the tight junction 

is a zone of closely apposed cell membranes. Freeze-fracture electron

microscopy (right) reveals the dense interconnecting network of strands

that define the tight junction. 
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physiological responses. There are numerous connexin genes
in humans and each shows organ-specific diversity, which
allows for organ-specific regulation of communication. Gap
junctions coordinate epithelial function by allowing sheets 
of cells to behave as syncytia, for example coordinating exo-
cytosis of zymogen granules from the pancreas (see Chap-
ter 15). Gap junction communication in the liver, working
through intracellular Ca2+ waves, modifies bile secretion 
in response to glucagon and vasopressin. Gap junctions are
often mutated or down-regulated in gastrointestinal cancers
[51], probably reflecting the aberrant intercellular commun-
ication that is characteristic of the neoplastic phenotype.

Polarized protein delivery 
Plasma membrane proteins and secreted proteins pass
through a series of distinct vesicular compartments as they
are sorted to either the apical or basolateral surface. They
share a common site of synthesis on ribosomes bound to the
rough endoplasmic reticulum and undergo posttranslational
modification (e.g., glycosylation) in the Golgi apparatus.
Membrane proteins and secreted proteins are then sorted
into distinct vesicles in the trans-Golgi network (Fig. 8.2). In
most cells, proteins destined for the basolateral surface are
delivered directly to that domain; studies using live cell imag-
ing have suggested that this basolateral delivery may even be
targeted to specific sites along the lateral membrane [52].
Detailed analysis of basolaterally targeted proteins has shown
that specific amino acid sequences located within the cyto-
plasmic tail are sufficient to direct basolateral delivery [53].
Several of these sequences, including those with conserved
tyrosine residues, are sorted by the epithelial adapter protein
AP-1B [54]. This protein selects cargo destined for the baso-
lateral membrane and also coordinates the assembly of the
exocytic machinery necessary for fusion of transport vesicles
with the plasma membrane. The exocytic machinery includes
members of the Rab family of small guanosine triphosphate
(GTP)-binding proteins and SNARE proteins that target
delivery of transport vesicles to specific membrane domains
[55,56]. Although not yet identified, other adapter proteins
must also exist, because the sorting of E-cadherin, Na+,K+-
ATPase, and proteins with dileucine-containing basolateral
targeting motifs is AP-1B independent. 

In contrast to basolateral proteins, apically targeted pro-
teins are transported by both direct and indirect pathways
[57,58]. Proteins that traffic directly to the apical membrane
include those that associate with glycolipid- and cholesterol-
rich membrane domains, such as the brush border hydrolase
sucrose-isomaltase, as well as proteins that are targeted inde-
pendently of these membrane domains, such as lactase–
phlorizin hydrolase. Dependence on actin also differentiates
these two direct transport pathways, as transport of sucrose-
isomaltase occurs along actin tracks and is inhibited by actin
depolymerization, whereas lactase–phlorizin hydrolase trans-
port is actin independent. The targeting motifs that direct

apical delivery have been more difficult to identify than their
basolateral counterparts. Thus far, ectodomain glycosylation
sites and transmembrane protein domains, including those
that allow association with glycolipid- and cholesterol-rich
membranes, have been implicated in apical targeting [59]. 

Direct trafficking to the apical membrane is not used by all
proteins nor in all cell types. In hepatocytes, for example, all
membrane proteins are first delivered to the basolateral sur-
face. The apically destined proteins are then transcytosed to
the apical, or canalicular, surface. A simple example of this
type of sorting in hepatocytes and intestinal epithelia is pro-
vided by the polyimmunoglobulin (IgA) receptor, which
binds IgA on the basal surface and is then transcytosed and
released as secretory component into bile or the intestinal
lumen [60]. In addition to specific targeting sequences that
direct basolateral and then apical delivery, transcytosis also
requires microtubules, which serve as tracks for the move-
ment of transport vesicles from basolateral to apical surfaces.
Why apical proteins without specific basolateral duties take
this indirect pathway remains unclear. However, this mechan-
ism is useful for the redistribution of apical proteins errantly
targeted to the basolateral membrane, as well as for the 
sorting of membrane proteins during the initial stages of
epithelial polarization. 

Maintenance of membrane domains
Once delivered to the correct plasma membrane domain,
proteins can be retained through interactions with actin-
based cytoskeletal proteins. For example, the Na+,K+-ATPase
is stabilized on the basolateral membrane domain by attach-
ment to the cytoskeleton through the linker proteins ankyrin
and spectrin. The complex functions of the apical membrane
require intricate structures, such as parietal cell secretory
canaliculi (see Chapter 13) and enterocyte microvilli. Assembly
and maintenance of these membrane domains depends, in
part, on ezrin–radixin–moesin (ERM) proteins, which play a
critical role in the organization of apical, or free, membrane
domains in species as diverse as C. elegans, Drosophila, and
mammals, and in multiple cell types from epithelia to lym-
phocytes [61]. These highly conserved cytoskeletal proteins
link membrane proteins to the actin cytoskeleton by way 
of an amino-terminal cargo-binding domain and a carboxy-
terminal actin-binding domain. The cargo-binding domain
can interact with transmembrane proteins either directly or
through accessory proteins, such as NHERF-1, NHERF-2, and
PDZK1 [62–67]. These accessory proteins can also anchor
protein kinases (e.g., protein kinase A), thus serving as a scaf-
fold for the organization of signaling complexes [66,68,69].
For example, the cystic fibrosis transmembrane regulator
(CFTR) is bound to PDZ domains in NHERF-1 or NHERF-2.
These interactions stabilize CFTR at the apical membrane 
and tether CFTR to protein kinase A, thereby enhancing 
the ability of protein kinase A to activate CFTR [68,70].
Ezrin-dependent mechanisms have also been implicated in
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stimulated apical delivery of the apical Na+/H+ exchanger
NHE3, after the initiation of Na+/glucose cotransport in ente-
rocytes, and in the acute surface delivery of the H+,K+-ATPase
in histamine-stimulated parietal cells [71,72]. Studies in
knockout mice lacking ezrin, the only ERM protein ex-
pressed in enterocytes, confirm the central role of this pro-
tein in organizing the apical membrane [73]. Enterocytes 
in these mice develop only primitive microvilli and fail to
correctly target some proteins to the apical membrane.
Moreover, the villi are irregularly shaped, with intravillous
lumens and fused profiles. Not surprisingly, these mice fail to
wean and die in the early postnatal period. 

Organization of the cytoskeleton
The cytoskeleton is considered here in the context of the vil-
lous absorptive enterocyte, a cell type that has become an
important model for studies of cytoskeletal structure and
function in nonmuscle cells. The cytoskeletal organization of
columnar epithelia throughout the gastrointestinal tract
exhibits only relatively minor differences. The stabilization of
epithelial cell structure first requires support for the tall
columnar shape; in the absence of the cytoskeleton, a sphere
would have the most thermodynamically favorable proper-
ties. Maintenance of cell shape is primarily a function of the
actin microfilaments that form a network beneath the entire
plasma membrane (Fig. 8.2). Bundles of 20–30 actin fila-
ments also form the submembranous cores responsible for
microvillous architecture. Within these cores, individual micro-
filaments are cross-linked to each other by actin-bundling
proteins and to the microvillous membrane by a member 
of the myosin family, myosin IA. The microvillous actin 
bundles jut into the apical pole of the cell and associate with a
terminal web composed of actin and type II myosin that
interfaces with the apical junctional complex. The tension of
this perijunctional actomyosin ring can be adjusted in response
to physiological and pathophysiological stimuli, allowing
modulation of epithelial barrier function (see Regulation of
barrier function by physiological stimuli and Dysregulation
of barrier function in intact epithelium). 

Cables composed of intermediate filaments course through
the cells and function as support cables for structural but-
tressing. Such tonofilament cables associate with plasma
membranes and insert into the desmosomes. This network of
intercellular junctions and intermediate filaments is required
for the intestinal epithelia to interface with the turbulent
environment of the gut lumen. 

Microtubules also form a unique array in polarized epithe-
lial cells. In contrast to nonpolarized cells in which micro-
tubules radiate from a single microtubule organizing center
adjacent to the nucleus, microtubules in polarized epithelia
are aligned apicobasally. With the assistance of microtubule-
dependent motor proteins, kinesins and dyneins, which can
transport vesicles along microtubule arrays, membrane-
bound structures are trafficked throughout the cell. This
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microtubule network is particularly important in trans-
cytosis; microtubule disruption markedly slows this process. 

Basement membrane
In addition to its important structural and supportive roles,
the basement membrane serves as a source of signals for
inducing epithelial cell polarity. All alimentary epithelia
reside on a basement membrane that is 20–40 nm deep, con-
sists of a fibrillar network, and rests on an underlying extra-
cellular matrix (Fig. 8.1). The basement membrane in the
alimentary tract, similar to basement membranes in other tis-
sues, is composed primarily of laminin, heparan sulfate pro-
teoglycans, and type IV collagen. Minor constituents that
may be functionally important include thrombospondin and
entactin/nidogen-1. 

Laminin exhibits specific binding sites for type IV collagen,
heparan sulfate proteoglycans, cell surface laminin receptors,
and entactin. Other matrix components also possess binding
sites for additional components, adding to the complexity of
interactions between the epithelial cell and its surrounding
environment. The major proteoglycans of the basement
membrane, heparan sulfate proteoglycans, consist of long
chains of glycosaminoglycans linked to a protein core. The
structure of these massive molecules is often likened to a test-
tube brush, with the bristles representing the glycosamino-
glycan extensions. Proteoglycans probably organize water
within the basement membrane, hydrating this environment
through their capacity to bind water, and possibly imparting
solute-sieving characteristics under conditions of bulk water
flow. Although a controversial concept, impaired water and
electrolyte absorption may cause the watery diarrhea seen in
collagenous colitis, a disease that manifests thickening of the
basement membrane [74,75]. 

Type IV collagen originates as a triple-stranded helical
molecule, which, unlike other collagens, does not have its
propeptides sheared from it after deposition in the extracel-
lular space. Partially as a result of this, collagen IV does not
cross-link into dense fibrils; instead it assumes a loose, net-
like structure by associating with other collagen IV mole-
cules. This mesh-like structure of collagen IV may provide
the basic structure to the basement membrane.

Basement membrane components can exert significant
effects on epithelia, including modulation of proliferation,
adhesion, migration, differentiation, and even barrier func-
tion. In the intestine, type IV collagen is produced primarily
by mesenchymal cells, heparan sulfate proteoglycans by
epithelial cells, and laminin by both mesenchymal and
epithelial cells. Many basement membrane components bind
to a family of epithelial cell surface molecules, the integrins,
which are connected to the actin cytoskeleton through linker
proteins. Through such associations, structural elements
within the cell are able to connect with, and potentially be
influenced by, events occurring within the basement mem-
brane and more deeply within the extracellular matrix.
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Epithelial barriers

Various sites in the alimentary tract are threatened by the
presence of acid, bile, undigested potentially antigenic pro-
teins, bacterial proteins, and live bacteria. It is not surprising,
therefore, that the epithelial barrier consists of numerous
components that prevent injury from these varying insults.
Some of these components are site specific and others are
universally present. To discuss these barriers, we arbitrarily
divide them into two major categories: those that are extrin-
sic to the epithelium (although in some instances produced
by the epithelium) and those provided by the physical pre-
sence of the epithelium, which we describe as intrinsic 
barriers.

Extrinsic barriers
Extrinsic barriers confront the microenvironment overlying
the epithelia.

Mucus
All alimentary epithelia are coated with a layer of mucus that
protects against bacteria and surface shear forces (Fig. 8.5).
Most surfaces, including those of the stomach, the intestine,
the pancreatobiliary ducts, and the gallbladder, contain spe-
cialized cell types that synthesize, package, and secrete
mucin. In the esophagus, mucin is derived from small glands
that lie under the epithelium and connect to the lumen by
way of delicate ducts. Although the precise chemical nature
of mucus varies throughout the alimentary tract, the various
mucin molecules share common features. They are viscous,
polydispersed glycoproteins (250–20 000 kDa) of which about
80% of the mass is carbohydrate. At least eight human
mucin-producing genes (MUC) have been identified. MUC2 is
the predominant form in intestinal and colonic surfaces.
Esophageal MUC2 expression can be a marker of Barrett

esophagus: In inflammatory bowel disease and cancer, altered
MUC2 expression may occur.

Mucins act as a barrier by behaving as a viscous hydrated
gel which undoubtedly attenuates shear forces that the
epithelium would otherwise experience from lumenal par-
ticulates that are driven down the alimentary tract by peri-
staltic propulsion. In addition, carbohydrate groups on
mucin molecules may bind to bacterial surfaces, thereby
inhibiting surface adhesion and colonization. In some in-
stances, mucin carbohydrates replicate epithelial carbohy-
drate binding sites to which bacteria can attach, presumably
preventing colonization by acting as a molecular decoy.
Given their extensive glycosylation, mucins can cross-link
and aggregate bacteria. Such aggregation presumably aids in
bacterial clearance. Exposure of epithelial surfaces to threats
such as bacterial toxins and noxious chemicals often results
in a reflexive secretory release of mucins, further augment-
ing their protective effects. Mucin depletion is a nonspecific
histological indicator of ongoing injury often noted in biopsy
specimens. The expression of mucin genes and the secre-
tion of mucin by goblet cells respond to intestinal microbes
and host-derived inflammatory mediators and are altered 
by infections, such as Helicobacter pylori in the stomach.
Consistent with the essential protective role ascribed to
mucins, mice deficient in Muc2, which is down-regulated in
human inflammatory bowel disease, develop spontaneous
colitis [76].

It has been observed that the diffusion coefficients of
hydrophilic molecules are substantially lower in mucin than
in free solution. Some researchers have suggested that this
alteration would diminish contact between the epithelial
surface and lumenal threats such as acid. Given the depth of
the mucin layer and the duration that lumenal contents are
in contact with the epithelium, however, small molecules
probably have sufficient time to equilibrate within the
mucous gel.

Dendritic cell
Intraepithelial lymphocyte Macrophage

Lymphocyte

M cell

Unstirred layer
IgA

IgG

Mucus layer

Goblet cell Basement membrane

Figure 8.5 Epithelial barriers. The intestinal

epithelium is the focal point around which 

the interaction of lumenal material and

subepithelial cells, including those of the

immune system, is organized. In addition to

conducting vectorial transport and maintaining

a cellular barrier, epithelia also contribute to

host defense by elaborating mucus and

transporting immunoglubulins.
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Unstirred layer
Peristalsis creates a rather turbulent environment in the gas-
trointestinal lumen. This turbulence or convective force does
not extend to the epithelial surface. The best estimate is that
an aqueous layer with a thickness of 300–800 µm lies above
the epithelia. This apical microenvironment is still, that is, it
is unstirred. Convective forces then increase rapidly with
increasing distance from the mucosal surface. Although not
fully determined, the physiological impact of the unstirred
layer on the immediate environment to which epithelial cells
are exposed must be profound.

The presence and volume of the unstirred layer may
significantly affect nutrient absorption. For example, if the
epithelial transport system can transport a given nutrient
more rapidly than the nutrient can diffuse into the unstirred
layer, diffusion becomes the rate-limiting step in absorption.
In contrast, polymeric nutrients that are broken down into
monomers at the brush border (e.g., carbohydrates) may be
formed at very high rates within the unstirred layer. Should
local nutrient concentrations exceed transporter capacity,
this in itself represents the rate-limiting step in absorption.
Because the concentration of a molecule at the epithelial 
surface is unlikely to be equivalent to the concentration of
that molecule in the center of the lumen, the challenge of
measuring solute concentrations within the unstirred layer
obscures the biophysics of many transport reactions within
the intact intestine. Thus, the confounding issue of the un-
stirred layer must be confronted when analyzing molecular
transport kinetics. 

Secreted immunoglobulins
The epithelial surfaces in the alimentary tract are for the most
part bathed by secretory IgA and IgG (Fig. 8.5). Secretory IgA
is produced as a dimer by lamina propria plasma cells, trans-
cytosed by the polyimmunoglublin receptor, and released
into the lumen as a consequence of proteolytic clipping of the
receptor. IgG is transcytosed by the neonatal Fc receptor
[77]. By binding to lumenal threats such as pathogenic bac-
teria or toxins, secretory IgA and IgG act as barriers to anti-
genic material [78]. Although of extreme importance in host
defense, this barrier is highly specific and dependent on prior
antigenic sensitization [79]. Secretory IgA binding to the sur-
faces of pathogens may not only impede pathogen–epithelial
interactions over most of the epithelial surface but also actu-
ally enhance pathogen–epithelial interactions at selected
sites such as the M cells [80], a cell type responsible for the
afferent limb of intestinal immunity. 

Secreted bicarbonate
In contrast to the extrinsic barriers discussed previously,
some extrinsic barriers have regional variation. One well-
described example is the net bicarbonate (HCO3

−) secretion by
epithelia that interface with the acidic lumenal environment
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of the stomach. The proximal duodenum also must protect
itself from gastric acid, as pancreatic bicarbonate secretions
enter the gut lumen further downstream. The effects of
epithelial bicarbonate secretion on the stomach and the 
duodenum are of central interest [81]. Clearly the first line of
defense is the neutralization of intralumenal acid before it
reaches the epithelium. As a result, the unstirred layer over-
lying the epithelium has a pH much closer to neutral than
layers more distant from the mucosal surface [82–85]. In
vivo confocal imaging of the gastric juxtamucosal alkaline
layer in anesthetized mice shows that the pH set point of this
layer is determined by the balance between epithelial H+ and
HCO3

− secretion and not by the thickness of the unstirred
layer [86]. Further, the presence or absence of the gastric
mucus layer appears to have no effect on surface pH. Thus,
apical HCO3

− secretion by gastric surface foveolar cells and
duodenal villous absorptive cells is an important example of
a highly specific and regionally localized extrinsic epithelial
barrier. Intracellular HCO3

− may also play an important role
in cytoprotection of the duodenal epithelium [87], providing
further evidence of the complex interactions between mul-
tiple ion transporters [85]. 

Antimicrobial peptides
Gut epithelial cells produce and secrete peptides with anti-
microbial functions. Several classes of peptides have been
isolated from humans, including members of the defensin,
cathelicidin, and histatin families. Paneth cells at the base 
of the crypts in the small intestine and ascending colon
release certain enzymes with antimicrobial activity, includ-
ing lysozyme and type II phospholipase A2. Paneth cells also
produce defensin peptides [88], of which some are released
specifically in response to bacteria [89,90]. Some defensins
not only exert direct antibacterial activity [91] but also
orchestrate a protective host response by signaling to
immune cells and by stimulating apical Cl− and water secre-
tion to flush the lumen [92,93]. The observations that the
susceptibility gene NOD2 for Crohn’s disease is required for
expression of some defensins [94] and that decreased de-
fensin gene copy number may be related to colonic Crohn’s
disease [95] suggest that disruption of essential protective
defensin functions may contribute to the pathogenesis of
Crohn’s disease [96]. 

Intrinsic barriers
The contribution and presence of specific extrinsic barriers
vary in different regions of the gastrointestinal tract. In 
contrast, the intrinsic barrier is formed by the continuous
sheet of epithelial cells that lines the entire gastrointestinal
tract. This uninterrupted epithelial layer separates lumenal
material from the subepithelial space.

Classically, discussions of epithelial barrier function con-
sider two routes by which material may traverse the barrier;
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the transcellular and paracellular pathways (Fig. 8.3). The
exact physical site where solutes cross the epithelium was a
topic of considerable controversy until it was recognized that
proteins insert into and form channels across lipid bilayers.
Similarly, the paracellular pathway was thought to be imper-
meable and unregulated, a misconception perpetuated well
into the 20th century because of the static appearance of
intercellular contacts seen in early electron micrographs.
Indeed, even the term “tight” junction is a misnomer, as tight
junctions form a transcellular barrier that selectively allows
paracellular flux of ions and small molecules. Our present
understanding of transcellular and paracellular transport
emerged along with the recognition that both are physio-
logically regulated and vary widely in different tissues.
Transepithelial transport of hydrophilic solutes along these
two pathways will be discussed below. The movement of
water and hydrophobic molecules across the epithelium
poses unique challenges. Hydrophobic compounds can cross
epithelial cells directly by virtue of their solubility in the lipid
bilayer. For example, saturated fatty acids cross jejunal
epithelial cell microvillous membranes at rates more than
1011-fold faster than they diffuse in aqueous solution. Fat
absorption, the most physiologically important transepithe-
lial movement of hydrophobic compounds, is considered
separately (see Chapter 18). Transmucosal water movement,
although incompletely understood, is discussed later in this
chapter (see Water movement across the epithelial barrier). 

Transcellular pathway
The transcellular pathway is highly restrictive to the passive
flow of hydrophilic solutes. To traverse an epithelial cell, 
an ion or other hydrophilic solute must interact with three
barriers in series: the apical membrane, the cytosol, and the
basolateral membrane (Fig. 8.3). Although the cytosol has
the potential to limit transcellular molecular flux, the two
plasma membranes are the key barriers that restrict the pas-
sive movement of hydrophilic solutes across epithelial cells. 

The lipid bilayers of the apical and basolateral membranes
prevent massive flux of hydrophilic solutes and preserve
transmembrane electrochemical gradients; the high resist-
ance to passive ion flow across model lipid bilayers approaches
impermeability. Biological membranes, which are composed
of lipid bilayers and membrane proteins, are slightly less
impermeable, but still capable of considerable resistances to
passive ion flow that are several orders of magnitude greater
than those of intact alimentary epithelial cell membranes.
Integral membrane proteins such as transporters, pumps,
and channels contribute to the relative permeability of ali-
mentary epithelia. These proteins serve a critical need as the
transmembrane movement of ions is essential for cellular
homeostasis. 

As discussed previously, vectorial transport relies on the
polarized delivery of transporters, pumps, and channels to

the apical and basolateral membranes. The specific example
of glucose absorption in the small intestine will be considered
here (Fig. 8.3). For detailed discussions of absorption and
secretion see Chapters 13–20. Glucose is actively transported
across the apical plasma membrane by the Na+/glucose
cotransporter SGLT1 [1]. The absence of this critical trans-
porter results in glucose–galactose malabsorption, an auto-
somal recessive disease characterized by the failure to absorb
these carbohydrates from the diet [97]. The energy source
that allows efficient uptake of lumenal glucose by SGLT1 is
the high extracellular, and low intracellular, Na+ concentration;
two Na+ ions are absorbed along with each glucose molecule.
The apical positioning of SGLT1 ensures that glucose is never
secreted into the lumen, as the Na+ gradient makes this ther-
modynamically unfavorable. The necessity for this apical
SGLT1 targeting was clearly shown by defects in transepi-
thelial Na+ and glucose transport when an SGLT1 molecule
engineered to include a basolateral targeting sequence was
transgenically expressed in intestinal epithelial cells [2].
Once within the cytosol, Na+ and glucose diffuse to the baso-
lateral membrane. Here, Na+ ions are pumped out of the cell
and into the subepithelial and basolateral interstitium by the
Na+,K+-ATPase, and glucose molecules diffuse across the
membrane in a concentration-dependent manner facilitated
by the glucose transporter GLUT2. The basolateral position-
ing of GLUT2 allows it to operate in the reverse direction,
bringing glucose into the epithelial cell from the subepithelial
interstitium, in the absence of lumenal nutrients. SGLT1 and
GLUT2 are specific transporters for sugars; other transporters
with similar properties manage the transport of amino acids
and other nutrients. It should be apparent that the subepithe-
lial deposition of Na+ and glucose results in an osmotic gradi-
ent that drives water absorption (Fig. 8.3). This is exemplified
by the severe diarrhea and dehydration that are usually fatal
in patients with glucose–galactose malabsorption unless
these sugars are eliminated from the diet (see Chapter 51).

Paracellular pathway
The paracellular pathway is a major pathway for passive solute
permeation. Although plasma membranes tend toward high
resistance, alimentary epithelia, with the exception of the eso-
phageal epithelium, have low net resistance, meaning that
they are relatively leaky. Detailed molecular, biophysical, and
morphological analyses have shown that the paracellular path-
way is largely responsible for the leakiness of these epithelia.

The paracellular pathway consists of the apical intercellu-
lar tight junction and the underlying paracellular space.
Under most conditions the tight junctions are the rate-
limiting barrier, restricting passive movement of hydrophilic
solutes through the paracellular space. The permeability of
tight junctions to ions and solutes varies between tissues and
even between sites within tissues (e.g., crypt vs villus) and, in
the resting physiological state, tight junctions may leak small
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quantities of molecules the size of monosaccharides and dis-
accharides. The degree of this leakiness is regulated and, as
will be described, greatly increased under some conditions
[30,98,99].

The selective ionic permeability of the tight junction is
largely defined by the expression of specific members of the
claudin family of proteins [25,100,101]. Familial hypomag-
nesemia, a disease of deficient renal tubular Mg2+ reabsorp-
tion resulting from the loss of a single claudin isoform
[23,102], is the best example of this selective mechanism.
Although similar genetic losses of claudin family members
have not been described in gastrointestinal disease, the
unique claudin protein distributions along the length of the
gastrointestinal tract, as well as along the crypt–villus axis,
explain, at least in part, the variation in paracellular per-
meability at different sites [103]. Changes in the specific pat-
tern of claudins expressed by intestinal epithelia may also
contribute to disease. For example, inflammatory bowel 
disease is associated with increased claudin-2 expression and
decreased claudin-5 and -8 expression [104–107]. In vitro
studies suggest that claudin-2 expression increases tight junc-
tion permeability [101,108], which is consistent with the re-
ported increased permeability in inflammatory bowel disease. 

Water movement across the epithelial barrier
Despite the obvious importance of fluid transport across gas-
trointestinal epithelia, controversy remains about the rela-
tive importance of the transcellular vs paracellular routes.
One route for transcellular water movement is through
transmembrane channels created by members of the aqua-
porin protein family [109]. These small integral membrane
proteins are well studied in tissues specialized for regulated
water transport, such as the collecting duct of the kidney.
Although aquaporins are expressed in gastrointestinal
epithelia, and expression may be reduced in colitis [110],
their contribution to water movement in the gastrointestinal
tract remains unknown. Numerous mouse models deficient
in specific aquaporins have shown defective water move-
ment in salivary glands, pancreas, and liver, but only minor
difficulty in handling water in the intestine [109,111,112].
Other models have suggested that the apical Na+/glucose
cotransporter SGLT1 serves as a molecular water pump, car-
rying a large number of water molecules with each glucose
molecule transported [113]. However, the osmotic gradient
discussed previously can completely explain the enhanced
water absorption induced by Na+/glucose cotransport, thereby
raising some doubt as to the quantitative contribution of this
pathway [114,115]. Transcellular water movement may also
occur across lipid membranes; water movement is much less
restricted than that of hydrophilic solutes. However, the
mechanism by which water permeates biological membranes
in the absence of specific channels is uncertain. 

Although there is general agreement that water flux
requires both transcellular and paracellular routes, the relat-
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ive contribution of each is controversial. Some data suggest
that about 50% of the water absorption stimulated by
Na+/glucose absorption is paracellular. Data from a variety 
of other epithelia show that interepithelial differences in
hydraulic conductivity, a measure of force-induced water
flux, correlate reasonably well with transepithelial electrical
resistance. Finally, data suggest that a leaky paracellular
pathway is necessary to support the massive water secretion
that accompanies acute immune-mediated diarrhea [30].
These observations suggest that the paracellular pathway is 
a major route for water flow across intestinal epithelia
whether such flow is driven by hydrostatic or osmotic pres-
sures [116–118]. 

Transport of xenobiotics
The gastrointestinal tract, particularly the small intestine, is
actively involved in the transport and metabolism of foreign
chemical compounds, including environmental toxins and
therapeutic agents. Many of these so-called xenobiotics are
absorbed transcellularly; some are lipophilic and dissolve
easily in lipid membranes. Others take advantage of apical
uptake pathways that are normally expressed, such as the
apical Na+-dependent bile salt transporter or members of the
organic anion transporting polypeptide family [3,119,120].
Basolateral transporters, such as multidrug resistance associ-
ated protein 3, ABCC3, may then allow xenobiotics to tra-
verse the basolateral membrane [121]. A significant fraction
of these compounds may never reach the basolateral mem-
brane, as members of the cytochrome P450 system expressed
in enterocytes may contribute a “first-pass” effect of their
own [122]. Analogous to the effects of drugs metabolized by
the hepatic cytochrome P450 system, enterocyte nuclear
receptors can up-regulate expression of enterocyte drug
transporters and cytochrome P450 enzymes [3,119]. These
layers of regulation not only challenge the maintenance 
of steady-state drug levels but also increase the potential 
for drug interactions [123]. Dysregulation of xenobiotic
metabolism and transporter activity may be a pathogenetic
mechanism in inflammatory bowel disease [124]. Genetic
polymorphisms in these transporter proteins may also lead to
significant variation in clinical responses [125,126]. 

In addition to metabolic clearance, active secretion rapidly
clears many xenobiotics from the intestine. This secretory
activity, which is primarily mediated by MDR1, an apical
multidrug resistance transporter family member [124,127],
exhibits significant interindividual variability, similar to
absorption and metabolism. Interestingly, MDR1 mutations
have been associated with inflammatory bowel disease in
some patient populations [128], and a knockout mouse lack-
ing mdr1 spontaneously develops colitis [129,130]. MDR1
polymorphisms may also be related to disease behavior in
ulcerative colitis [127,131], suggesting that defective export
of an unidentified xenobiotic contributes to the pathophysio-
logy of intestinal disease [132].
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Epithelial homeostasis and responses to
disease and injury

Commensal bacteria
Bacteria normally colonize the entire human gastrointestinal
tract, with the highest concentration and number of species
in the colon. Although bacterial cells outnumber the cells of
the human body by about 10-fold, most of these organisms
belong to only three evolutionary divisions that are, at least
in part, modified in a host-specific manner [133–135] 
(see Chapter 25). These nonpathogenic bacteria are termed
commensal, to distinguish them from well-characterized
pathogenic species such as Salmonella, Shigella, and Clo-
stridium difficile. It appears that the commensal host–bacteria
relationship is beneficial [136], as normal gut function is
highly dependent on resident bacteria. Such probiotic effects
take several forms, including competing with pathogens for
attachment to the epithelial surface, triggering intracellular
signal transduction events that limit disease, and inciting the
epithelium to release antimicrobial compounds [137–139].
Studies in germ-free mice show that the normal develop-
ment of immune cell lineages in the bone marrow and the
lamina propria and local humoral defense depends on the
presence of the commensal bacteria in the gut [140,141].
Inductive effects on epithelial cell gene transcription have
also been observed [142]. For example, introducing com-
mensal Bacteroides species into germ-free mice extensively
alters the bacterial and epithelial transcription profiles
toward gene products that enhance nutrient uptake and
metabolism [143–145], revealing a possible association with
obesity [146,147].

Although the molecular mechanisms remain poorly
understood, published reports of the probiotic effects of com-
mensal bacteria are increasing. For example, sterilization of
the gut greatly enhances disease severity in some murine
models of colitis [138,139,148]. This effect appears to be at
least partially mediated by toll-like receptors (TLRs) that
specifically recognize bacterial products [138,139,149–152].
Beneficial effects of probiotics have been reported in experi-
mental disease as well as in ulcerative colitis and pouchitis
[153–155]. The effects of bacteria on intestinal function are
discussed in detail in Chapters 25, 48, 49, and 52.

Physiological epithelial injury
Epithelial injury is most readily apparent when gaps within
the epithelium such as erosions or ulcerations are present.
However, because the gut has a remarkable ability for repair,
many forms of focal acute injury do not result in functionally
significant defects. One example is the rapid sealing of
wounds that must occur during the physiologically normal
turnover of gastrointestinal epithelia. Gut epithelial cells turn
over, on average, once each week through coordinated pro-
liferation, migration, apoptosis, and sloughing. For example,

small intestinal enterocytes arise from the stem cell compart-
ment, i.e., the crypt, migrate upward through the proliferat-
ive zone, and undergo an ordered process of differentiation
as their phenotype is modified from undifferentiated secre-
tory cell to fully differentiated villous absorptive cell. They 
are then sloughed from the villous surface. Membrane pro-
teins, with half-lives considerably shorter than that of the
epithelial cell, also turn over. The composition of these pro-
teins changes remarkably during the process of differen-
tiation. Lipid turnover undoubtedly occurs as well but tech-
nical challenges hinder its documentation. Perhaps most re-
markable in this continual process of renewal is that, at sites
of epithelial cell detachment, the barrier remains intact
[156,157]. In vivo imaging studies suggest that a presently
undefined substance fills the “gap” left as the epithelial cell
exits the villus, preventing diffusion of lumenal material into
the subepithelial villous core [156,158]. The renewal process
must then be completed by some form of wound closure,
possibly involving cytoskeletal contraction [158–161].

Regulation of barrier function by 
physiological stimuli
Intestinal permeability can be regulated by physiological pro-
cesses. For example, it is well documented that Na+/nutrient
cotransport enhances the permeability of absorptive tight
junctions to molecules the size of amino acids and glucose
[99,162,163]. Although the physiological significance of
these Na+/nutrient cotransport-induced increases in tight
junction permeability remains controversial, the process
probably underlies the observations that, at high lumenal
glucose concentrations, both glucose and amino acid absorp-
tion exceed the capacity of their respective transcellular
transport systems [164–166]. The concept of “solvent drag”
offers an explanation [167]. For example, as described previ-
ously, active transcellular Na+ and nutrient absorption result
in the development of a transepithelial osmotic gradient that
drives water absorption. Solvent drag is the mechanism by
which water absorption across the tight junctions with
increased permeability allows the solvent (i.e., water) to drag
nutrient-sized molecules (i.e., free glucose within the
unstirred layer) across the tight junction. In this manner,
transcellular absorption is amplified by paracellular absorp-
tion [167]. The latter depends on generation of a suitable
transepithelial osmotic gradient and increased permeability
of tight junctions to small molecules. This mechanism can
also enhance paracellular absorption of undegradable com-
pounds, such as D-amino acid-substituted short peptides and
creatinine [168,169]. Oral pharmaceutical delivery may
benefit from use of this pathway.

Physiological tight junction regulation is initially triggered
by the apical Na+/glucose cotransporter SGLT1 (Fig. 8.3).
This initiation of Na+/glucose cotransport activates a signal
transduction pathway that induces increased NHE3-medi-
ated apical Na+/H+ exchange, resulting in mild cytoplasmic
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alkalinization and enhance Na+ absorption [170,171]. These
events are accompanied by the activation of myosin light
chain kinase, which phosphorylates the myosin II regulatory
light chain and triggers contraction of the perijunctional
actomyosin ring [172]. Although the molecular details of the
subsequent tight junction remodeling are not yet defined, 
it is clear that this myosin II regulatory light chain phospho-
rylation is required for Na+/glucose cotransport-induced
increases in tight junction permeability.

Dysregulation of barrier function in 
intact epithelium
Despite an intact epithelium, tight junction permeation to
inert solutes is enhanced in many inflammatory, infec-
tious, ischemic, and immune-mediated intestinal diseases
[173,174]. For example, permeability defects in celiac sprue
can be reversed by a gluten-free diet [175]. Similarly, in both
graft-versus-host disease and HIV infection, increased serum
lipopolysaccharide levels (reflecting leakage of lumenal con-
tents) correlate with disease severity [176,177]. 

Permeability defects are also seen in Crohn’s disease;
increased permeability in patients with inactive disease can
predict disease reactivation [178,179]. In addition, permeab-
ility defects are present in a subset of healthy first-degree 
relatives of patients with Crohn’s disease [180,181]. This has
led to speculation that a primary defect in tight junction bar-
rier function may cause Crohn’s disease [181–183]. Despite
this, it is clear that the inflammation of Crohn’s disease can
also cause increased permeability, as barrier function can be
restored by treatment with antibodies that neutralize tumor
necrosis factor [184]. Conversely, tumor necrosis factor acutely
reduces barrier function in cultured intestinal epithelial
monolayers and jejunal epithelia of intact mice [116,185–187]. 

In a remarkable demonstration of how pathophysiological
events can hijack physiological regulatory mechanisms,
investigators have shown that tumor necrosis factor disrupts
the intestinal epithelial tight junction by way of myosin II
regulatory light chain phosphorylation [188]. In vitro stud-
ies have shown that this is due to both transcriptional 
and enzymatic activation of myosin light chain kinase
[185,186,189,190], and that similar increases in myosin light
chain kinase expression and enzymatic activity correlate
with disease activity in inflammatory bowel disease [191].
Moreover, in vivo work has shown that myosin light chain
kinase-driven loss of barrier function is required for the
development of acute tumor necrosis factor-mediated diar-
rhea [30]. These data have led to the proposal of a disease
model in which impaired mucosal barrier function leads to
increased leakage of lumenal contents and inappropriate
immune stimulation, subsequent interferon-γ and tumor
necrosis factor release, and further loss of barrier function.
The result is a self-amplifying cycle of barrier dysfunction and
inappropriate immune activation [173]. Thus, compromised
barrier function may be a critical event in the initial patho-
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genesis and subsequent exacerbation of inflammatory bowel
disease and other intestinal diseases. 

Healing of epithelial wounds
The destruction of gastrointestinal epithelial cells, as occurs
in erosions and ulcers, leads to the loss of epithelial barrier
function. Both the magnitude and duration of injury deter-
mine the epithelial response. Wounds representing loss of
approximately 1–10 epithelial cells close extremely rapidly,
within 30 min or less, by a purse-string closure mechanism
[159–161,192]. This response depends on some of the same
cytoskeletal mechanisms discussed previously, with small
GTPases (e.g., Rho) directing the assembly of a ring of actin
cables at the edge of the wound (Fig. 8.6) [159,193]. These
cables, which are connected across adjacent cells by intercel-
lular junctions, assemble within minutes of wounding and
then begin to contract by a mechanism that requires myosin
light chain kinase activity [159]. As noted, some data suggest
that a similar purse-string mechanism maintains the epithe-
lium after the extrusion of single apoptotic cells, which is a
normal physiological process. 

Larger epithelial wounds must also be sealed quickly. The
initial rapid cell migration, termed restitution, involves a 
dramatic cytoskeletally directed modification of cell shape
(Fig. 8.6) [194]. The columnar cells bordering a wound, nor-
mally tall, spread to become flattened, taking on an almost
squamoid appearance and maximizing the basement mem-
brane surface area covered by each cell [194]. Often seen in
intestinal endoscopic biopsies, this flattened appearance is an
easily recognized marker of ongoing epithelial restitution.
Persistent injury also stimulates cell growth. The same stim-
uli often evoke both motogenic (migration-promoting) and
mitogenic (proliferation-promoting) effects [195–199]. Thus,
inflammatory mediators and growth factors may promote
initial reepithelialization of wounds by initiating restitution,
and support this process over extended periods by enhancing
cell proliferation.

Interactions of epithelia with subepithelial cells
Gut epithelial function may be modulated by a host of local
factors derived from nonepithelial sources, such as growth
factors, cytokines, and chemokines, which are discussed in
detail in Chapters 4 and 7. Direct interactions between epi-
thelial cells and the immune system also occur; an obvious
example involves the M, or microfold, cell [200]. This spe-
cialized epithelial cell resides in the convex dome epithelium
that overlies mucosal lymphoid follicles. Although indistin-
guishable from adjacent enterocytes by light microscopy,
electron microscopic evaluation shows that the basal mem-
brane of M cells is retracted from the basement membrane,
forming a cleft into which lymphocytes and macrophages
migrate (Fig. 8.5). M cells actively sample lumenal mater-
ial by bulk endocytosis; the transport vesicles are then
released into the cleft, permitting extremely rapid delivery of

9781405169110_4_008.qxd  8/28/08  7:11 PM  Page 180



Epithelia CHAPTER 8

181

lumenal material to immune cells. Infectious organisms may
exploit this pathway as a route of invasion. Other epithelial
cells not confined to follicle-associated epithelium may also
be capable of transporting antigens to mucosal immune 
cells [201], and a specialized population of dendritic cells
within the ileal lamina propria actually extend slender pro-
cesses across the tight junction to directly sample lumenal
antigens and bacteria (Fig. 8.5) [202–204]. Finally, although
not yet well described, additional cell types, beyond epithelial
and immune cells, clearly regulate epithelial function [205–
207].

Integration of mucosal function

The gastrointestinal mucosa is a complex structure that coor-
dinates a variety of critical functions. These include balancing
barrier function with the need for transepithelial movement
of ions, nutrients, and antigens; rapid repair of mucosal
injuries; and beneficial interactions with the array of mucosal
immune cells. The precise integration of these functions cen-
ters on the epithelium, which is continuously repaired by

rapid wound closure, restitution, and other mechanisms. The
gut epithelial barrier, which restricts passive movement of
molecules, is complex and dynamic. Maintenance of this bar-
rier depends on the integrity of cellular plasma membranes
and intercellular tight junctions. The mucosal barrier also
benefits from the contributions of mucus, epithelial secretory
products, such as HCO3

−, and secreted immunoglobulins.
Potential threats within the lumen are continuously sur-
veyed and managed by M cells, intraepithelial and lamina
propria lymphocytes, dendritic cells, and macrophages. From
the examples provided in this chapter, and other chapters in
this textbook, it is evident that dysregulation of any of these
functions can result in diseases with overlapping clinical 
presentations. Thus, future studies should aim to better
understand the interplay between the intricate systems that
comprise the gastrointestinal mucosa.
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