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risk? Perhaps, it is time to abandon this one-size-fits-all
approach and adjust surveillance practices to reflect the
growing consensus of substantially reduced risk estimates
for nondysplastic Barrett’s in recent reports.
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Expanding the Lauren Classification: A New Gastric Cancer Subtype?
See “Identification of molecular subtypes of
gastric cancer with different responses to
PI3-kinase inhibitors and 5-fluorouracil,”
by Lei Z, Tan IB, Das K, et al, on page 554.

denocarcinoma of the stomach remains a major public
Ahealth issue. Although the incidence of this cancer in
the United States has been falling, with only 21,600 new
cases expected in 2013,1 the prognosis for patients remains
grim. Despite improvements in treatment approaches,
5-year survival remains at<30%.1 In addition to the typically
advanced stage of diagnosis for most gastric adenocarci-
nomas, these dismal survival statistics reflect the lack of
effective treatment options. Identifying specific signaling
pathways in individual patients might improve treatment
outcomes, but only limited data are available. In this issue of
GASTROENTEROLOGY, Lei et al2 describe an approach to over-
coming this obstacle. Their results identify 3 molecular
signatures of gastric adenocarcinoma (Table 1). Patient
survival data indicate that one of these subtypes may best be
treated using 5-fluorouracil. In vitro data also suggest that
another subtype may be particularly sensitive to phospha-
tidyl-inositol-3-kinase inhibitors.

This study builds on previous mRNA analyses of gastric
cancers by this group and others.3–10 By combining 192
previously reported9 and 56 new microarray expression
profiles, Lei et al2 created a database describing 248 Singa-
porean primary gastric cancers. These were broken into 3
unique groups using hierarchical clustering with iterative
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Table 1. Gastric Adenocarcinoma Classifications

Lauren (1965) Lei et al. (2013)

Diffuse Intestinal type Mesenchymal Proliferative Metabolic

Intestinal type morphology 0%a 100%a 30%a

(7%)a
74%a

(71%)b
54%a

(84%)b

Diffuse morphology 100%a 0%a 59%a

(93%)b
17%a

(29%)b
41%a

(16%)b

Intestinal metaplasia 55% 91%
Chronic gastritis 45% 88%
Copy number alteration Low High
Amplified genes CCNE1, MYC, ERBB2, KRAS
Aberrant methylation Hypermethylation Hypomethylation
TP53 mutations Low High Low
aClassification based on criteria of Lauren (1965).11
bClassification based on criteria of Tan et al. (2011).7
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feature selection. The 201 gastric cancers that best repre-
sented the 3 groups were used to develop classification al-
gorithms. The algorithms were then validated using a
separate set of 70 Australian primary gastric cancers. The
data show that at least for gastric cancers arising in
Singapore and Australia, subclassification into the 3 groups
is reproducible.

To better understand the biological significance of the
distinct groups, Lei et al2 examined the differentially
expressed genes. The clusters were designated as mesen-
chymal, to reflect expression of genes in the epithelial-
mesenchymal transition pathway; proliferative, because
growth promoting oncogenic pathways were activated;
and metabolic, owing to expression of genes associated
with metabolic pathways.

Further analyses of each group showed that mesenchymal
tumors lost expression of E-cadherin, the epithelial cadherin
isoform. Consistent with the frequent loss of E-cadherin
expression in signet ring cell gastric cancers, nearly 60% of
mesenchymal tumors were classified as Lauren’s diffuse type
506
(Figure 1A), and 70% had at least some features of diffuse
gastric cancer.11 Further, consistent with reports that diffuse
gastric cancers tend to be hypermethylated,12 mesenchymal
tumors displayed genomic hypermethylation. Transforming
growth factor-b, vascular endothelial growth factor, nuclear
factor-kB, mammalian target of rapamycin, sonic hedge-
hog, and cancer stem cell pathways were also activated in
mesenchymal gastric cancers. In contrast, p53 mutations
and DNA copy number variations were limited.

In contrast with mesenchymal gastric adenocarcinomas,
nearly 75% of proliferative tumors were Lauren’s intestinal
type (Figure 1B). These tumors tended to have activation
of E2F, MYC, and RAS pathways and mutations of
CCNE1, MYC, ERBB2, and KRAS. Proliferative cancers were
hypomethylated and often harbored p53 mutations. These
characteristics suggest that the proliferative cluster over-
laps with Lauren’s intestinal type and that this group
includes tumors responsive to therapies targeting epithe-
lial growth factor receptor (EGFR), ERBB2, and growth
factor or stem cell pathways.
Figure 1. Classic Lauren
gastric cancer subtypes. (A)
Diffuse gastric cancers are
most often composed of signet
ring cells and infiltrate as indi-
vidual cells (arrowhead) or
single-file lines (arrow). Mucin is
deposited within the tumor
stroma. (B) Intestinal-type
gastric cancers are composed
of tall columnar cells arranged
in glands. Mucin and necrotic
debris is deposited within the
gland lumens.
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The real surprise of this paper is the presence of a
third gastric adenocarcinoma cluster. Why did this study
identify 3 groups when previous molecular analyses,
including those by this same group using many of the
same gastric cancer specimens, found only 2? One pos-
sibility is the hierarchical clustering analysis employed
here. Although powerful, this approach requires the user
to predefine the number of clusters in the data set. Lei
et al2 determined the correct number of clusters empir-
ically. Increasing the cluster number from 2 to 3
improved the statistical accuracy of subclassification,
whereas further cluster number increases provided only
minimal benefit. This led Lei et al2 to postulate that 3
subtypes of gastric cancer were present in the set. The
differences between the 3 groups identified support this
hypothesis.

The mesenchymal and proliferative subtypes largely
coincide with Lauren’s diffuse and intestinal subtypes. So
what is the third type of gastric cancer? Histologically,
these tumors are nearly evenly split between diffuse and
intestinal types. There are no characteristic gene amplifi-
cations, and p53 mutations are rare. It is therefore un-
derstandable that the so-called metabolic type tumors
were lost within the diversity of diffuse and intestinal type
tumors in previous analyses. However, it is notable that
the metabolic tumor group includes features of spasmo-
lytic polypeptide-expressing metaplasia.8,13

Armed with this new information, Lei et al classified
gastric cancer cell lines as mesenchymal, proliferative, or
metabolic and tested their in vitro sensitivity to chemo-
therapeutic agents. Remarkably, metabolic tumors were
highly sensitive to 5-fluorouracil. This seems to also be
true in vivo, because 5-fluorouracil treatment was associ-
ated with 100% 5-year survival among Singaporean pa-
tients with metabolic type gastric cancers. Cancer-specific,
disease-free survival was also improved and, after adjust-
ing for TNM stage, overall survival was also enhanced by
5-fluorouracil treatment in Australian metabolic tumors.
Lei et al also found that mesenchymal-type gastric cancer
cell lines were more sensitive to phosphatidyl-inositol-
3-kinase inhibitors in vitro, although in vivo patient data
are not available.

While these data are striking, one might question the
dependence on retrospective review of pathology reports,
which are recognized to be unreliable owing to variation
in classification criteria over time. How could review of
the actual histopathology have added to the hierarchical
clustering analysis? Although long forgotten, it is worth
noting that Lauren’s landmark study was not simply a
description of intestinal-type and diffuse gastric adeno-
carcinomas. This 1965 work was a detailed study that
analyzed morphologic data in a manner similar to that in
which molecular data are now used. Multiple tumor
characteristics were collected and clusters were combined
when they were found to overlap significantly. Ulti-
mately, Lauren was left with 2 primary groups: Intestinal
type and diffuse. In addition to the distinctive
architecture and cytology, these subtypes also differed in
that intestinal type cancers presented a decade later than
diffuse adenocarcinomas. Lauren also found that
intestinal-type tumors were associated with chronic
gastritis and intestinal metaplasia in 90% of cases,
whereas only half of diffuse cancers had these features.
Thus, intestinal-type, or proliferative, cancers likely
develop as a result of chronic gastritis and intestinal
metaplasia, whereas diffuse, or mesenchymal, adenocar-
cinomas do not. The new molecular data further suggest
that the metabolic subtype defined by Lei et al may
originate within spasmolytic polypeptide-expressing
metaplasia.13

Inclusion of classic histologic data, as well as degree of
differentiation, mitotic rate, and presence of spasmolytic
polypeptide-expressing metaplasia, may have greatly
enriched Lei’s analysis and minimized the redundancy
apparent in the tendency of mesenchymal gastric cancers
to be diffuse and of proliferative tumors to be intestinal
type. Adding histopathology to the cluster analysis might
have also provided tools for development of a simpler
means to identify 5-fluorouracil–sensitive tumors. This
approach has been successful in identifying subgroups of
other tumors. For example, histologic separation of
desmoplastic small cell tumors from a larger group of
small, blue, round cell tumors made it possible to
recognize that these lesions had a characteristic chro-
mosomal translocation resulting in a EWS–WT1 gene
fusion.14,15 Detection of this fusion protein is now part
of the standard diagnostic workup of small, blue, round
cell tumors and is used to identify desmoplastic small cell
tumors within that group. Similarly, histology and assay
of a select set of genes and proteins might provide an
effective means to subclassify gastric adenocarcinoma.
The latter might include simple immunohistochemistry
or molecular analyses of p53, MYC, EGFR, ERBB2/Her2,
K-RAS, Ki67, mucin genes, stem cell markers, thymidy-
late synthase, and dihydropyrimidine dehydrogenase
(low expression of thymidylate synthase and dihy-
dropyrimidine dehydrogenase are associated with favor-
able 5-fluorouracil responses in colorectal cancer16).
Notably, recent reports have used either a simple 6-gene
panel or the combination of well-differentiated intesti-
nal-type and microsatellite instability as markers of
5-fluorouracil–sensitive gastric adenocarcinomas.3,17

Overall, the study by Lei et al2 and similar reports3–10,17

represent new hope for personalized therapy of gastric
adenocarcinoma. Finding ways to apply this information to
identify tumor subsets and develop molecularly tailored,
individualized therapies will require creative thinking in this
era of evidence-based, cost-effective medicine.
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Do Therapeutic Bile Acids Hit the Sweet Spot of Glucose Metabolism in
NAFLD?
See “Efficacy and safety of the farnesoid X
receptor agonist obeticholic acid in patients with
type 2 diabetes and nonalcoholic fatty liver
disease, by Mudaliar S, Henry RR, Sanyal AJ,
et al, on page 574.

t has been known for almost 15 years that bile acids
Ihave broad and powerful hormonal properties as gene
regulators that parallel their previously well-established
physiologic roles in choleresis and digestion.1–4 These
amphipathic cholesterol-derived molecules are perfectly
poised to act in the disposition of food as well as
participate in energy homeostasis owing to their physical
properties as well as locations deeply enmeshed in the
luminal milieu, enterocyte, and hepatocyte interior as
they course through their roles in the enterohepatic
circulation.5–9 It makes sense to think of these molecules
as, arguably, the perfect sensors, sentries, and de-
liverymen of molecular information and nutrients to
these central components of health, growth, and in-
teractions with the ingested world. Even a cursory look at
bile acid structure and the ever-expanding identification
of intracellular targets now place this class of molecules
squarely as effectors, integrators, and key regulators of
metabolism.

In essence, given the multitudinous roles played by bile
acids, these molecules can be colloquially described as ste-
roids “on steroids”—meaning that as hormones they have
transcriptional, signaling, and luminal actions—arguably
the most far-reaching signaling effector molecules in the
body. In particular, as transcriptional regulators, bile acids
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