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    Introduction 
 The epithelial tight junction, or zonula occludens (ZO), separates 

apical and basolateral plasma membrane domains and serves as 

a selectively permeable barrier to regulate paracellular diffusion 

( Farquhar and Palade, 1963; Claude and Goodenough, 1973 ). 

More than 30 integral and peripheral membrane proteins targeted 

to the tight junction have been identifi ed ( Stevenson et al., 1986 ; 

 Citi et al., 1988 ;  Furuse et al., 1993, 1998 ;  Itoh et al., 1993 ;  Jesaitis 

and Goodenough, 1994 ;  Zahraoui et al., 1994; Dodane and Kachar, 

1996 ;  Haskins et al., 1998 ;  Izumi et al., 1998 ;  Martin-Padura et al., 

1998 ;  Chen and Lu, 2003 ;  Hurd et al., 2003 ;  Kohler et al., 2004 ; 

 Ohnishi et al., 2004 ;  Tomson et al., 2004 ;  Ikenouchi et al., 2005 ). 

ZO-1, the fi rst tight junction protein identifi ed ( Stevenson et al., 

1986 ), includes three tandem PDZ protein interaction domains that 

mediate binding to other plaque and transmembrane tight junction 

proteins ( Beatch et al., 1996 ;  Haskins et al., 1998 ;  Itoh et al., 1999; 

Ebnet et al., 2000 ;  Bezprozvanny and Maximov, 2001 ;  Hamazaki 

et al., 2002 ;  Fanning et al., 2007 ). In addition, ZO-1 and the struc-

turally related proteins ZO-2 and -3 interact with perijunctional fi l-

amentous actin both directly and indirectly through other proteins 

such as  � -catenin and cingulin, thereby anchoring the tight junc-

tion to the cytoskeleton ( Rajasekaran et al., 1996 ;  Itoh et al., 1997 ; 

 Fanning et al., 1998 ;  Cordenonsi et al., 1999 ;  Wittchen et al., 1999; 

Bazzoni et al., 2000 ;  Fanning et al., 2002 ). Claudins bind ZO-1, -2, 

and -3 via a C-terminal PDZ-binding motif ( Itoh et al., 1999 ). The 

importance of this interaction is demonstrated by the association 

of a ZO-2 mutation that reduces claudin binding with familial 

hypercholanemia ( Carlton et al., 2003 ) as well as a study of cells 

lacking ZO-1 and -2, which fail to recruit claudins and do not 

develop barrier function ( Umeda et al., 2006 ). 

 Together with the functional importance of claudin – 

ZO-1/-2 interactions, the multitude of interactions among tight 

junction proteins demonstrated by in vitro binding assays and 

coimmunoprecipitation studies ( Balda et al., 1996 ;  Fanning 

et al., 1998 ;  Mitic and Anderson, 1998 ;  Cordenonsi et al., 1999 ; 

 Bazzoni et al., 2000 ;  Kale et al., 2003 ;  Van Itallie and Anderson, 

2004; Li et al., 2005 ) has led to the hypothesis that the steady-

state tight junction is a large complex maintained by abundant 

protein cross-links. By analogy, this model is supported by a re-

cent study of the adherens junction that demonstrates that epi-

thelial cadherin,  � -catenin, and  � -catenin form a stable complex 

with one another ( Yamada et al., 2005 ). However, only one study 

has directly assessed the dynamic behavior of tight junction pro-

teins in the absence of external stimuli. That work concluded 

that fl uorescent-tagged claudin-1 expressed in fi broblasts is not 

mobile within the tight junction – like strands that develop in 

T
he tight junction defi nes epithelial organization. 

Structurally, the tight junction is comprised of trans-
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of protein movement. These data demand that our current model of 

tight junction molecular structure be revised and may provide a ba-

sis for understanding the mechanisms that allow rapid tight junction 

remodeling in response to extracellular stimuli. 

 Results 
 The multiprotein complex within the 
tight junction is dynamic at steady state 
 We recently reported the generation and validation of ZO-1, oc-

cludin, and claudin-1 fl uorescent fusion proteins using EGFP and 

monomeric RFP1 ( Shen and Turner, 2005 ). Each of these fusion 

proteins is accurately targeted to the tight junction and localizes 

these cells ( Sasaki et al., 2003 ). Thus, the tight junction is widely 

viewed as a static structure under steady-state conditions. 

 Our study of fl uorescent tight junction fusion proteins ex-

pressed in epithelial monolayers raised the possibility of occludin 

fl ow within the tight junction ( Shen and Turner, 2005 ). Although 

this observation could represent the fl ow of tight junction protein 

complexes, as occurs for cadherin – catenin complexes at the adher-

ens junction, it could also suggest that binding interactions at the 

tight junction are far more dynamic than previously thought. There-

fore, we directly assessed protein dynamics within the tight junc-

tion and now show that tight junction proteins are highly dynamic 

in resting steady-state epithelial monolayers. Each protein studied 

displays distinct dynamic behavior, refl ecting different mechanisms 

 Figure 1.    Individual tight junction proteins display distinct FRAP behaviors in polarized epithelia.  (A) EGFP-occludin,  – claudin-1,  – ZO-1, and  –  � -actin were 
studied by FRAP. High magnifi cation images of tight junction segments before and at the indicated time points after photobleaching are shown in the left 
panels. Corresponding kymographs are shown at the right. (B) Quantitative analysis of FRAP from experiments similar to those shown in B ( n  = 7, 6, 8, and 
6 for occludin, claudin-1, ZO-1, and  � -actin, respectively). (C) The mobile fraction and  t  1/2  of recovery for each protein were calculated from the recovery 
curves in B. Error bars represent SEM. Bars, 2  μ m.   
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studied shortly or at prolonged intervals after confl uence. To assess 

this, FRAP behaviors of occludin, claudin-1, ZO-1, and  � -actin 

were measured in monolayers 1, 3, and 10 d after confl uence, rep-

resenting steady-state kinetics present in newly formed (1 d), as-

sembled (3 d), and older, stable (10 d) MDCK monolayers 

( Table I ). At 1 d after confl uence, the increased ZO-1 mobile frac-

tion and decreased  � -actin  t  1/2 , both relative to values at 3 d, suggest 

that the assembling tight junction is highly dynamic. Although the 

tight junction is far more stable at 3 d after confl uence, there is an 

increase in dynamic behavior 10 d after confl uence that is mani-

fested as reduced  t  1/2  for both occludin and tight junction – associated 

 � -actin ( Table I ). Although the signifi cance of this late increase in 

exchange rates is not clear, it is possible that the structure of the 

fully mature tight junction is specially modifi ed to allow rapid regu-

lation and fi ne-tuning of function. In any case, these data demon-

strate that in stark disagreement with prevailing models of the tight 

junction, the multiprotein complex within the tight junction is 

highly dynamic at steady state. 

 Occludin and ZO-1 exchange are 
differentially dependent on membrane 
properties and metabolic energy 
 To begin to dissect processes that mediate tight junction protein 

exchange, monolayers were subjected to treatments that broadly 

affect cellular functions. Initially, the temperature dependence 

of occludin and ZO-1 FRAP behavior was assessed ( Fig. 2 A ). 

The  t  1/2  of occludin and ZO-1 increased in a nearly linear manner 

as monolayers were chilled from 37 to 14 ° C ( Fig. 2 B ). Interest-

ingly, this paralleled transepithelial resistance (TER) increases 

( Fig. 2 B ). In contrast, the occludin mobile fraction decreased 

only slightly between 37 and 17 ° C but was then sharply reduced 

at 14 ° C ( Fig. 2 C ), suggesting that membrane fl uidity might be 

important to occludin FRAP behavior. The ZO-1 mobile fraction 

with the corresponding endogenous protein, as assessed bio-

chemically and morphologically at steady state and in response to 

stimuli ( Shen and Turner, 2005 ). Moreover, expression of these 

fusion proteins does not disrupt normal function either in vitro 

( Shen and Turner, 2005 ) or in vivo (unpublished data). Therefore, 

we conclude that these fl uorescent fusion proteins are suitable 

tools for analysis of tight junction protein dynamics in live cells. 

 Time-lapse imaging of confl uent MDCK epithelial cell 

monolayers expressing fl uorescent-tagged occludin frequently 

demonstrated small fl uctuations in fl uorescent intensity despite 

stable barrier function ( Shen and Turner, 2005 ). Although such 

fl uctuations were not seen in fi xed monolayers, they could po-

tentially represent imaging artifacts as a result of slight move-

ments of live cells within the z plane. To distinguish between 

artifact and actual movement of occludin within the tight junction, 

occludin dynamics were assessed by monitoring FRAP in con-

fl uent monolayers with established intercellular junctions. These 

experiments show that the majority of tight junction – associated 

occludin is available for exchange; the mobile fraction is 71  ±  3% 

( Fig. 1, A – C ). This observation was unexpected because oc-

cludin interacts with many proteins at the tight junction, and the 

generally accepted model of steady-state tight junction structure 

is of a highly stable multiprotein complex ( Chen et al., 1997 ; 

 Gonzalez-Mariscal et al., 2000 ;  Tsukita et al., 2001; Peng et al., 

2003 ;  Seth et al., 2007 ). 

 Because occludin exchange occurs relatively slowly with a 

 t  1/2  of 194  ±  19 s, the observed FRAP could represent diffusion of 

an occludin-containing protein complex within the tight junction. 

To determine whether tight junction proteins remain bound to one 

another during exchange, the mobility of ZO-1, which binds 

directly to occludin, was assessed ( Furuse et al., 1994 ;  Fanning 

et al., 1998 ;  Schmidt et al., 2001; Li et al., 2005 ). Similar to oc-

cludin, 69  ±  5% of tight junction – associated ZO-1 is available for 

exchange ( Fig. 1, A – C ). However, unlike occludin, ZO-1 ex-

changes more rapidly, with a  t  1/2  of only 119  ±  21 s. Thus, despite 

well-characterized binding interactions between ZO-1 and oc-

cludin, these data suggest that there is a continuous and rapid 

dissociation of the majority of each of these proteins from one 

another within fully assembled steady-state tight junctions. 

 The unexpected differences in FRAP kinetics between 

ZO-1 and occludin prompted investigation of the exchange ki-

netics of claudin-1 and tight junction – associated  � -actin. Clau-

din-1 has a small mobile fraction of 24  ±  5% ( Fig. 1, A – C ). 

Thus, in contrast to occludin and ZO-1, only a minority of tight 

junction – associated claudin-1 undergoes exchange at the tight 

junction. Consistent with reports that actin is highly dynamic at 

cell – cell contact sites ( Yamada et al., 2005 ), the majority of 

junction-associated  � -actin exchanges rapidly with a mobile 

fraction of 98  ±  6% and a  t  1/2  of 106  ±  18 s. Remarkably, the 

combination of mobile fraction and  t  1/2  of fl uorescent recovery is 

unique for each of these four representative proteins ( Fig. 1 C ). 

 Recent work suggests that interactions between claudin pro-

teins and ZO-1 or -2 are necessary for tight junction assembly 

( Umeda et al., 2006 ) and that the stability of steady-state tight junc-

tion function increases with the duration of postconfl uent mono-

layer culture ( Tang and Goodenough, 2003 ). Therefore, it is possible 

that the aforementioned distinct FRAP behaviors may differ if 

 Table I.    The dynamic behavior of tight junction proteins changes 
after confl uence  

 Postconfl uent  
 time 

 Mobile   
  fraction 

  t  1/2  

 d  %  s 

Occludin

1 74  ±  7 139  ±  17

3 71  ±  3 194  ±  19

10 77  ±  3 107  ±  8  a  

Claudin-1

1 25  ±  3 142  ±  36

3 24  ±  5 200  ±  21

10 22  ±  2 195  ±  65

ZO-1

1 87  ±  5  a  101  ± 1 5

3 69  ±  5 119  ±  21

10 72  ±  3 98  ±  16

 � -Actin

1 99  ±  2 15  ±  1  a  

3 99  ±  6 106  ±  18

10 97  ±  3 43  ±  8  a  

All measurements represent means of at least fi ve independent measurements.

 a P  <  0.05 versus 3-d monolayers.

DYNAMIC STRUCTURE OF STEADY-STATE TIGHT JUNCTIONS  •  Shen et al.
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traffi c, these data suggest that occludin may recover by mecha-

nisms that require these processes. 

 To further characterize the general mechanisms of occlu-

din and ZO-1 exchange, FRAP behavior was assessed in meta-

bolically depleted monolayers. Reduction of cellular ATP levels 

by 65  ±  5% had no effect on occludin FRAP dynamics, although 

TER decreased by 56  ±  2% ( Fig. 2 D ). In contrast, ATP deple-

tion reduced the ZO-1 mobile fraction to 36  ±  6% ( Fig. 2 F ) and 

the  � -actin mobile fraction to 19  ±  4% (not depicted). These 

fi ndings show that occludin and ZO-1 dynamics require distinct 

factors. Furthermore, the differential regulation of occludin 

and ZO-1 dynamics by these treatments supports the conclu-

sion that occludin and ZO-1 do not form stable complexes at the 

tight junction. 

did not change signifi cantly as monolayers were cooled from 37 

to 14 ° C ( Fig. 2 C ). 

 Tight junction membranes are enriched in cholesterol, and 

cholesterol depletion is known to disrupt barrier function ( Lynch 

et al., 1993; Francis et al., 1999 ). Thus, it is plausible that the 

observed decrease in occludin mobile fraction at 14 ° C is caused 

by the stabilization of cholesterol-rich tight junction membrane 

domains. To assess the effect of cholesterol depletion on occlu-

din exchange, monolayers were treated with methyl- � -cyclo-

dextrin (MBCD). This reduced TER by 45  ±  1% ( Fig. 2 D ) and 

also sharply reduced the occludin mobile fraction from 73  ±  4 

to 18  ±  2% (P  <  0.01;  Fig. 2 E ). In contrast, cholesterol deple-

tion had no effect on ZO-1 FRAP behavior ( Fig. 2 F ). Because 

MBCD treatment affects both membrane fl uidity and vesicular 

 Figure 2.    Occludin and ZO-1 FRAP are differ-
entially dependent on membrane composition 
and metabolic energy.  (A) FRAP experiments 
were performed on monolayers of EGFP-
occludin –  and EGFP – ZO-1 – expressing cells 
incubated at 37 (control), 18, or 14 ° C, with 
MBCD, or after ATP depletion. Representative 
kymographs are shown. (B and C) The  t  1/2  and 
mobile fraction were calculated from FRAP ex-
periments ( n   ≥  5 at each temperature). TER 
was measured in parallel. (D – F) TER and mo-
bile fraction were determined in monolayers 
incubated with MBCD or after ATP depletion. 
 n   ≥  5 for each treatment. Error bars represent 
SEM. Bar, 2  μ m.   
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perturbations that alter membrane function or metabolic energy 

content suggest that distinct mechanisms are involved in the 

observed FRAP behaviors of these proteins. To preliminarily 

determine the mechanism of occludin recovery at the tight junc-

tion, an  � 10- μ m segment of the tight junction was bleached, 

 The primary mechanism of occludin 
exchange is diffusion within the 
plasma membrane 
 Although fractions of the occludin and ZO-1 available for 

exchange are similar, the differences in  t  1/2  and sensitivity to 

 Figure 3.    Occludin diffuses within tight junction.  (A) EGFP-occludin – expressing cells within confl uent monolayers were studied by FRAP after photobleach-
ing elongated tight junction regions. Representative images before and at the indicated time points after photobleaching and the corresponding kymograph 
are shown. (B) The effect of continuous photobleaching of EGFP-occludin within a region of the tight junction is shown in representative images at the 
indicated times and in the corresponding kymograph. (A and B) Quantitative analysis of the individual sites indicated by the colored arrows is shown at 
the right. (C) Fluorescence of PA-GFP was activated in the white areas shown in the image collected during activation. Images collected at subsequent 
times show diffusion of activated PA-GFP – occludin to adjacent regions. The corresponding kymograph and quantitative analysis of the indicated activation 
region and adjacent region are shown. (D) The effect of continuous intracellular photobleaching of an EGFP-occludin – expressing cell within a confl uent 
monolayer is shown. The kymographs and quantitative analyses show FLIP analysis of tight junction – associated EGFP-occludin within the indicated regions 
of photobleached and adjacent control cells. Bars: (A and B) 5  μ m; (C and D) 10  μ m.   
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As shown in  Fig. 3 C , occludin fl uorescence was activated at two 

tight junction regions. Although total tight junction fl uorescence 

remained constant after activation, occludin fl uorescence decreased 

progressively in areas of activation and increased in adjacent re-

gions of the tight junction, demonstrating occludin exchange 

between these areas ( Fig. 3 C ). These data confi rm that a principal 

mode of occludin exchange is diffusion within the membrane. 

 The aforementioned experiments do not exclude a contri-

bution of vesicular traffi c to the observed occludin FRAP. This 

is critical, as occludin has frequently been reported in cytoplas-

mic vesicles, and endocytic removal of occludin from the tight 

junction correlates with barrier loss in response to a variety 

of stimuli ( Furuse et al., 1996 ;  Lapierre et al., 1999 ;  Ye et al., 

1999; Clayburgh et al., 2005 ;  Shen and Turner, 2005 ;  Schwarz 

et al., 2007 ). Intracellular occludin-containing vesicles are readily 

seen within transfected monolayers ( Shen and Turner, 2005 ). 

However, fl uorescent intracellular vesicles were not apparent after 

and recovery was monitored in the center and edges of this 

region. Fluorescent recovery began at the edges; the center of the 

bleached region recovered only after a lag of  � 500 s ( Fig. 3 A ). 

Because total occludin content within the tight junction is con-

stant at steady state and fl uorescent recovery represents the re-

cruitment of unbleached occludin molecules into the bleached 

region, this suggests that occludin moves by diffusion within 

the membrane. Two separate approaches were used to directly 

assess occludin movement at steady state. First, the fl uorescent 

loss in photobleaching (FLIP) technique was used to continuously 

bleach a small region of the tight junction. Consistent with oc-

cludin diffusion within the membrane, loss of fl uorescence oc-

curred most rapidly in areas directly adjacent to the bleached 

region, whereas fl uorescence loss occurred more slowly at greater 

distances from the bleached region ( Fig. 3 B ). A complementary 

experiment made use of an occludin construct containing photo-

activatable (PA) GFP ( Patterson and Lippincott-Schwartz, 2002 ). 

 Figure 4.    Tight junction – associated ZO-1 exchanges with an intracellular pool.  (A) EGFP – ZO-1 – expressing cells within confl uent monolayers were studied by FRAP 
after photobleaching elongated tight junction regions. Representative images before and at the indicated times after photobleaching and the corresponding kymo-
graph are shown. (B) The effect of continuous photobleaching of EGFP – ZO-1 within a region of the tight junction is shown in representative images at the indicated 
times and in the corresponding kymograph. (A and B) Quantitative analysis of the individual sites indicated by the colored arrows is shown at the right. (C) The effect 
of continuous intracellular photobleaching of an EGFP – ZO-1 – expressing cell within a confl uent monolayer is shown. The kymograph and quantitative analysis show 
tight junction – associated EGFP – ZO-1 fl uorescence within the indicated tight junction region of a photobleached cell. Bars: (A and B) 5  μ m; (C) 10  μ m.   
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Collectively, these data show that the observed occludin FRAP 

behavior occurs primarily by diffusion within the membrane 

and that delivery of occludin from an intracellular pool partici-

pates either to a minor extent or not at all. 

 Tight junction – associated ZO-1 exchanges 
with an intracellular ZO-1 pool 
 As demonstrated in  Fig. 1 , although ZO-1 and occludin display 

similar mobile fractions at the tight junction, ZO-1 fl uorescence 

recovers more rapidly than does occludin. Thus, experiments 

similar to those used to assess the mechanisms of occludin recov-

ery were used to determine the mechanisms of ZO-1 recovery at 

the tight junction. In contrast to the results obtained with occludin, 

similar rates and extents of fl uorescent recovery were seen at the 

center and edges after bleaching an extended  � 10- μ m region of 

the tight junction ( Fig. 4 A ). In addition, FLIP analysis showed 

that continuous bleaching of a small region of the tight junction 

resulted in only limited fl uorescence loss in adjacent and distant 

activation of tight junction – associated PA-GFP – occludin ( Fig. 3 C ), 

suggesting that at steady state, large quantities of occludin do 

not routinely leave the tight junction to be concentrated in cyto-

plasmic vesicles. In addition, FLIP analysis showed that continuous 

photobleaching of the entire intracellular region, sparing the tight 

junction, only slightly diminished tight junction – associated oc-

cludin fl uorescence ( Fig. 3 D ). Thus, the recognized intracellular 

pool of occludin does not exchange rapidly with tight junction –

 associated occludin at steady state. As an additional test of this 

conclusion, the guanine exchange factor inhibitor brefeldin A, 

which blocks multiple exocytic and endocytic processes, was 

applied to monolayers. Brefeldin A did not inhibit occludin 

FRAP at the tight junction (unpublished data), confi rming that 

intracellular pools of occludin are not transported to the tight 

junction at rates suffi cient to explain the observed occludin 

FRAP. However, brefeldin A treatment decreased epithelial barrier 

function progressively over 2 h, suggesting that membrane traffi c 

may be important to the maintenance of tight junction integrity. 

 Figure 5.    Limited claudin-1 exchange occurs by diffusion within the tight junction.  (A) EGFP – claudin-1 – expressing cells within confl uent monolayers were 
studied by continuous photobleaching of a region of the tight junction. Representative images at indicated times and the corresponding kymograph show 
the effect on tight junction fl uorescence. Quantitative analysis of the individual sites indicated by the colored arrows is shown at the right. (B) The effect 
of continuous intracellular photobleaching of an EGFP – claudin-1 – expressing cell within a confl uent monolayer is shown. The kymograph and quantitative 
analysis shows tight junction – associated EGFP – claudin-1 fl uorescence within the indicated region of a photobleached cell before and at intervals after 
photobleaching. (C) High magnifi cation images and corresponding kymograph of EGFP – claudin-1  � YV  are shown. The mobile fraction and  t  1/2  of wild-type 
EGFP – claudin-1 and EGFP – claudin-1  � YV  are shown in the graph at the right. Bars: (A) 5  μ m; (B) 10  μ m; (C) 2  μ m.   
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of ZO-1 at the tight junction are not defined, but this non-

exchangeable pool increases between 1 and 3 d after confl uence 

( Table I ), suggesting that anchoring is related to the process of 

tight junction maturation. 

 Claudin-1 exchange occurs by limited 
diffusion within the tight junction 
 In contrast to occludin and ZO-1, claudin-1 exhibits little fl uo-

rescent recovery. To assess the mechanisms of claudin-1 exchange, 

FLIP experiments similar to those described for occludin and 

ZO-1 were performed. Continuous bleaching of a small region 

of the tight junction showed rapid loss of claudin-1 fl uorescence 

in the immediately adjacent area but not at more distant regions 

( Fig. 5 A ). This is consistent with the limited mobile fraction ob-

served in the initial claudin-1 FRAP experiments and suggests 

that claudin-1 also exchanges by diffusion within the tight junc-

tion. Continuous intracellular photobleaching had no signifi cant 

effect on tight junction – associated claudin-1 fl uorescence ( Fig. 

5 B ), suggesting that exchange between the tight junction and 

intracellular claudin-1 pools is minimal during the interval 

of these experiments. 

regions of the tight junction ( Fig. 4 B ). These data suggest that 

ZO-1 does not recover by diffusion within the membrane but by 

exchange with a separate pool. This was unexpected, as it is dif-

fi cult to detect intracellular ZO-1 pools immunohistochemically. 

Although some nuclear EGFP – ZO-1 is present in subconfl uent 

monolayers, which is consistent with a study of nuclear ZO-1 in 

undifferentiated epithelia ( Gottardi et al., 1996 ), only faint intra-

cellular fl uorescence is detectable in cells expressing EGFP – ZO-1. 

FLIP analysis with continuous intracellular bleaching was used 

to evaluate the presence or absence of intracellular ZO-1 pools. 

This maneuver resulted in progressive decreases in tight junction –

 associated ZO-1 fl uorescence ( Fig. 4 C ). As these experiments 

were performed only on confl uent monolayers where no nuclear 

ZO-1 is detected, the intracellular pool of ZO-1 is likely cyto-

plasmic. Tight junction – associated ZO-1 fl uorescent loss mea-

sured by FLIP occurs with a  t  1/2  of 89  ±  17 s, similar to the  t  1/2  of 

119  ±  21 s for exchange measured by FRAP. Therefore, these data 

demonstrate that a large fraction of tight junction – associated 

ZO-1 exchanges continuously with an intracellular pool. These 

studies also show that a small nonexchangeable pool of ZO-1 

exists at the tight junction. The interactions that anchor this subset 

 Figure 6.    In silico simulations accurately model tight junction protein dynamic behavior.  Computer models were established to predict tight junction protein 
dynamics (pink and cyan lines in A – L) and were compared with experimental data (red and blue symbols in A – L) for occludin (A – D), claudin-1 (E – H), and 
ZO-1 (I – L). Small area FRAP (A, E, and I), large area FRAP (B, F, and J), tight junction FLIP (C, G, and K), and intracellular FLIP experiments (D, H, and L) 
are compared. The models at the left show the assumptions required for the simulation to fi t the experimental data. Specifi c values are given in Table II.   



691DYNAMIC STRUCTURE OF STEADY-STATE TIGHT JUNCTIONS  •  Shen et al.

occludin, claudin-1, and ZO-1 were distributed among the lat-

eral membrane, tight junction, and intracellular compartments 

( Table II ). The mobility of each protein was defi ned based on 

the physical data shown in  Figs. 1 – 4 . Small area FRAP, large 

area FRAP, tight junction FLIP, and intracellular FLIP were 

performed by varying location, duration, and intensity of the 

virtual laser pulse without altering mobility parameters for each 

protein ( Fig. 6 ). 

 To test whether simple diffusion within the tight junction 

is suffi cient to account for the observed occludin behavior in 

FRAP and FLIP experiments, a model was developed with oc-

cludin localized only at the tight junction (unpublished data). 

In small area FRAP experiments ( � 3  μ m), 89% of observed oc-

cludin recovery at 600 s could be explained using simple diffu-

sion within the tight junction and a diffusion constant of 0.011 

 μ m 2 s  � 1  ( Table II ). However, this simulation did not accurately 

model larger area FRAP and tight junction – bleaching FLIP ex-

periments. To improve the simulation, a lateral membrane pool 

of occludin was included. This pool was modeled to represent 

20% of total cellular occludin and was allowed to exchange with 

tight junction – associated occludin according to the following 

equation:   J K  occ] K  occ] .occ f occ lat r occ TJ= × − ×( [ ) ( [ )       Using 

the determined rate constants ( Table II ), this simulation accu-

rately modeled recovery within large and small photobleached 

areas ( Fig. 6, A and B ). Including lateral membrane occludin 

in the model also allowed accurate simulation of FLIP ex-

periments in which a region of the tight junction was bleached 

 The aforementioned data demonstrate that the majority 

of claudin-1 is immobile at the tight junction. Although the 

majority of ZO-1 at the tight junction is exchangeable, the mobile 

fraction is  � 70% in monolayers with fully assembled tight junc-

tions ( Table I ), suggesting that a small but signifi cant fraction 

of tight junction – associated ZO-1 is nonexchangeable. There-

fore, it is possible that the immobile pool of tight junction –

 associated claudin-1 is anchored by binding to nonexchangeable 

ZO-1 molecules. To explore this possibility, an EGFP – claudin-1 

mutant lacking the C-terminal YV motif necessary for PDZ 

binding was expressed in MDCK cells. Although traffi cking of 

EGFP – claudin-1  � YV  to the tight junction is defective, localization 

to cell contact sites does occur in some cells. Remarkably, tight 

junction – associated EGFP – claudin-1  � YV  displayed a mobile frac-

tion of 13  ±  2%, which is signifi cantly lower than that of wild-

type EGFP – claudin-1 (P  <  0.05). The  t  1/2  of EGFP – claudin-1  � YV  

was similar to that of wild-type EGFP – claudin-1 ( Fig. 5 C ). 

Thus, although it is clear that the PDZ-binding motif of claudin-1 

is important for initial delivery, these data suggest that interactions 

requiring the C-terminus YV are not necessary for anchoring the 

majority of claudin-1 at the tight junction. 

 Quantitative modeling of tight junction 
protein exchange processes 
 To test the qualitative conclusions developed above and mathe-

matically model tight junction protein exchange, MDCK cells were 

simulated as cylinders. Based on their observed distributions, 

 Table II.    Parameters that defi ne tight junction protein dynamic behavior in computer simulations  

Tight junction protein Value

Occludin

   Tight junction fraction (all mobile) 80%

   Lateral membrane fraction (all mobile) 20%

   Intracellular fraction 0%

   Tight junction diffusion constant 0.011  μ m 2 s  � 1 

   Lateral membrane diffusion constant 0.1  μ m 2 s  � 1 

   Rate constant for movement to tight junction (K f ) 0.0040 s  � 1 

   Rate constant for movement from tight junction (K r ) 0.0010 s  � 1 

Claudin-1

   Tight junction fraction  
       Immobile fraction at the tight junction  
       Mobile fraction at the tight junction

100%  
 60%  
 40%

   Lateral membrane fraction 0%

   Intracellular fraction 0%

   Tight junction diffusion constant, immobile fraction 0  μ m 2 s  � 1 

   Tight junction diffusion constant, mobile fraction 0.011  μ m 2 s  � 1 

ZO-1

   Tight junction fraction  
       Exchangeable fraction at the tight junction  
       Nonexchangeable fraction at the tight junction

40%  
 25%  
 15%

   Lateral membrane fraction 0%

   Intracellular fraction 60%

   Tight junction diffusion constant, exchangeable and nonexchangeable fractions 0  μ m 2 s  � 1 

   Intracellular diffusion constant 1  μ m 2 s  � 1 

   Rate constant for movement to tight junction (K f ), exchangeable fraction 0.25  μ m 2 s  � 1 

   Rate constant for movement from tight junction (K r ), exchangeable fraction 0.0075 s  � 1 

   Rate constant for movement to tight junction (K f ), nonexchangeable fraction 0  μ m 2 s  � 1 

   Rate constant for movement from tight junction (K r ), nonexchangeable fraction 0 s  � 1 
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tight junction. Notably, a nonexchangeable pool at the tight junc-

tion is required to accurately model ZO-1 behavior. 

 Discussion 
 The explosion in recognized tight junction – associated proteins 

and identifi cation of interactions between these proteins has led 

to the widespread agreement that the tight junction is a complex 

of multiple cross-linked proteins ( Tsukita et al., 2001; Peng 

et al., 2003 ;  Anderson et al., 2004 ). This has led to the develop-

ment of a model in which assembled tight junctions in intact 

steady-state epithelia are static and is consistent with observa-

tions of stable structure and barrier function over time. 

 However, relatively little direct evidence supports this 

view. For example, behavior of fl uorescent-tagged claudin pro-

teins has been studied to only a limited degree in epithelial cells 

and fi broblasts. In the latter, which do not form tight junctions, 

claudin proteins assemble into long fi brils within the plasma 

membrane ( Sasaki et al., 2003 ). Although these strands interact 

with one another and frequently move within the plasma mem-

brane, FRAP analysis showed that claudin-1 within these 

strands is immobile ( Sasaki et al., 2003 ). This observation lent 

support to the belief that proteins within the tight junction are 

immobile or static. 

 The data presented here directly contradict the static model 

of tight junction structure. One piece of evidence supporting this 

conclusion is that each of the tight junction – associated proteins 

studied displays distinct dynamic behaviors and mechanisms of 

exchange. Approximately 70% of tight junction – associated ZO-1 

and occludin are each present within the mobile fraction. This 

might imply that they traffi c as a complex. However, subsequent 

investigation demonstrated that the rates and mechanisms of ex-

change differ for these proteins. Therefore, they do not exchange 

in complex with one another. Although only 24% of claudin-1 is 

in the mobile fraction, a number far greater than that suggested 

by experiments in fi broblasts, it should be noted that this also 

indicates that the majority of tight junction – associated claudin-1 

resides within an immobile pool. The interactions that anchor 

claudin-1 at the tight junction remain to be determined, but the 

experiments using claudin-1  � YV  suggest that stable binding be-

tween claudin-1 and PDZ domains of ZO-1, -2, and other tight 

junction proteins are not required. In fact, interaction between 

the claudin-1 C terminus and PDZ domains may promote clau-

din-1 exchange within the tight junction, as claudin-1  � YV  has 

a smaller mobile fraction than wild-type claudin-1. Consistent 

with the conclusion that interactions with endogenous full-

length claudin or other proteins stabilizes EGFP – claudin-1  � YV  

at the tight junction, a previous study has shown that claudin-1 – 

EGFP, in which EGFP placement at the C terminus obstructs 

interactions with ZO-1, displays limited exchange within the 

tight junction – like strands that develop in fi broblasts ( Sasaki 

et al., 2003 ). Nonetheless, interactions between the claudin-1 

C terminus and PDZ domains are important in directing claudin-1 

to localize at the tight junction, as claudin-1  � YV  protein traffi ck-

ing to cell contact sites was clearly defective. 

 The data clearly demonstrate that the majority of tight 

junction – associated ZO-1, occludin, claudin-1, and  � -actin do 

continuously ( Fig. 6 C ). Although it is clear from imaging ex-

periments that an intracellular pool of occludin is frequently 

present, it was not necessary to include this component in the 

models, which is consistent with the conclusion that intracellular 

occludin pools do not contribute signifi cantly to the observed 

FRAP and FLIP behaviors. This is confi rmed by FLIP with con-

tinuous intracellular bleaching ( Fig. 6 D ). In contrast, the ex-

change of lateral membrane –  and tight junction – associated 

occludin is necessary for the simulations to accurately model 

the physical observations, suggesting that this exchange does 

contribute to FRAP and FLIP behaviors and that lateral mem-

brane occludin may diffuse more rapidly than tight junction 

occludin. An immobile fraction is not necessary for the accurate 

modeling of occludin dynamic behavior, suggesting that the ob-

served immobile fraction may refl ect technical limitations 

rather than physical retention. 

 The  t  1/2  of claudin-1 recovery in small area FRAP experi-

ments was similar to that of occludin ( Fig. 1 ). Thus, claudin-1 

exchange was modeled with a diffusion constant of 0.011  μ m 2 s  � 1 , 

which is identical to that used for occludin. An immobile frac-

tion representing 60% of total claudin-1 was included to model 

the large immobile fraction observed experimentally. This model 

accurately simulates small ( Fig. 6 E ) and large ( Fig. 6 F ) area 

FRAP experiments. As an alternative to a large claudin-1 im-

mobile fraction, models in which the diffusion constant for 

claudin-1 was reduced were developed. These were able to dis-

play recovery at 600 s but did not accurately represent the ex-

perimentally determined  t  1/2  of claudin-1 recovery. Moreover, 

the model including a large claudin-1 immobile fraction accu-

rately simulated FLIP experiments bleaching tight junction 

( Fig. 6 G ) and intracellular regions ( Fig. 6 H ). Thus, the simu-

lation suggests that tight junction – associated claudin-1 and oc-

cludin recover by diffusion within the membrane at similar rates. 

However, in contrast to occludin, claudin-1 has a prominent im-

mobile fraction. 

 As suggested by the physical data, ZO-1 could not be 

modeled by simple diffusion within membrane compartments. 

The physical observations that prevented such modeling were 

that (1) recovery within different parts of photobleached areas 

occurred uniformly; (2) overall recovery rates after bleaching 

large and small areas were identical; and (3) tight junction – 

associated ZO-1 fl uorescence decreased after continuous in-

tracellular photobleaching. To model the dynamic behavior of 

ZO-1, the exchange between tight junction and intracellular 

pools was allowed to occur as described by the following 

equation:   J K  ZO-1] K  ZO-1] .ZO-1 f ZO-1 cyt r ZO-1 TJ= × − ×( [ ) ( [ )

  This required 60% of ZO-1 to be cytosolic, with the remaining 

40% localized to the tight junction and divided into exchange-

able and nonexchangeable pools ( Table II ). This model accu-

rately simulated small ( Fig. 6 I ) and large ( Fig. 6 J ) area FRAP 

experiments. The model also predicts the observed small 9% 

decay in regions adjacent to the photobleached region in FLIP 

experiments ( Fig. 6 K ) as well as the large decreases in tight 

junction fl uorescence seen in intracellular FLIP experiments 

( Fig. 6  L). Therefore, this model accurately simulates all ob-

served ZO-1 behavior on the basis of exchange between tight 

junction and intracellular pools without any diffusion within the 
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mounted on a custom-designed temperature-controlled stage (Brook Indus-
tries) at 37 ° C for 30 min to allow equilibration. Confocal scanning light 
microscopy was performed by using a microscope system (TCS SP2 AOBS; 
Leica) with a 63 ×  NA 1.40 oil immersion objective and a pinhole between 
1 and 2 AU. EGFP fusion proteins were excited using the argon 488-nm 
laser line and emission gated between 490 and 530 nm. FRAP experi-
ments were performed using the FRAP module of confocal software (Leica). 
A region of interest to be bleached was defi ned, and maximum laser 
power at the appropriate wavelength for an empirically determined num-
ber of iterations was used to bleach signals. Bleaching time was usually 
 < 10 s, resulting in bleaching throughout the full thickness of the tight junc-
tion. After bleaching, images were taken within the same focal plane at 
regular intervals (between 2 and 30 s) to monitor fl uorescence recovery. 

 To test the continuity of different cellular pools of tight junction pro-
teins, FLIP experiments were performed using the FLIP module of the confo-
cal software. Observation and photobleaching were performed in the 
same scan for different regions of the scanning fi eld. Continuous scanning 
was performed with no delay between scans for 5 – 15 min. For tight junc-
tion bleaching, a small area at the tight junction was continuously bleached 
at full laser power. For intracellular bleaching, a large area that encom-
passes  � 80% of the intracellular area at the tight junction level was contin-
uously bleached at full laser power. In either case, the remainder of the 
fi eld was observed using the laser at  � 10% power. 

 For inhibitor experiments, monolayers were treated with appropri-
ate drugs in HBSS for 1 h before use. ATP depletion experiments were 
performed using glucose-free HBSS containing 2 mM 2- D -deoxy-glucose, 
1 mM 2,4-dinitrophenol, and 10 mM NaN 3  to inhibit ATP generation. 
MBCD was used at 5 mM. 

 Fluorescence quantifi cation and data analysis 
 Time series of image fi les were opened and converted to multipage image 
fi les using Image J (National Institutes of Health). Image analyses were per-
formed by using MetaMorph 7 (MDS Analytical Technologies). Regions of 
interest were drawn, and the mean fl uorescence intensity of each region 
was logged for each time point. For small area FRAP experiments, regions 
of interest were drawn at the center of the bleach region, which occupies 
a fraction of the whole bleaching area. 

 For all FRAP experiments, mean fl uorescence in bleached areas was 
corrected for observation bleaching using a distant area of the tight junction 
for reference. The corrected data were fi t to the equation below, which as-
sumes that recovery involves a single coeffi cient ( Yguerabide et al., 1982 ): 
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 Preliminary analyses showed that higher order equations did not improve 
the quality of fi t. Using experimental data, the value for  t  1/2  was calculated 
with nonlinear regression without any constraints using Sigma Plot (SPSS, 
Inc.). Mobile fraction was determined as 
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 Computer simulation 
 A three-dimensional computer simulation was created to model the results 
of FRAP and FLIP experiments using the Virtual Cell biological modeling 
framework (www.vcell.org). Cells were modeled as cylinders with a diameter 
of 30  μ m and a height of 10  μ m to approximate the measured physical 
dimensions of MDCK cells in confl uent monolayers. The tight junction was 
modeled as a 1- μ m thick band. The model includes separate tight junction 
and extra tight junction membrane domains and an intracellular pool. 
A spatially defi ned laser was used to rapidly bleach 90% of fl uorescent 
molecules within 1 s, and molecules diffused according to defi ned rate 
constants and spatial constraints. Simulations used 10-ms time steps with a 
spatial simulation mesh of 1  μ m in the z axis and 0.6  μ m in the xy axis. 
Fluorescent intensities were normalized to initial conditions. After assignment 
of different constants and restraints, only the location, duration, and inten-
sity of the laser pulse were altered to simulate the various FRAP and FLIP 
experiments for each protein. The models used and data obtained can be 
accessed at http://vcell.org/applications/published%20_models.html. 

 TER measurements 
 MDCK cells were plated at confl uent density on semipermeable supports 
(Corning). TER was measured after 3 d using electrodes with a voltohmeter 
(EVOM; World Precision Instruments). 

not remain bound to one another at steady state. How can a 

model of tight junction structure be developed to accommodate 

these new data? One point that must be considered is that 31% of 

tight junction – associated ZO-1 does not exchange over the course 

of these FRAP and FLIP experiments. Together with the mathe-

matical modeling of ZO-1 behavior, which required the inclu-

sion of a nonexchangeable pool to accurately simulate the 

physical data, these data suggest that a stable pool of ZO-1 exists 

at the tight junction. Although the functional differences between 

exchangeable and nonexchangeable ZO-1 and the relevance of 

these pools to tight junction function remain to be determined, 

the studies of general perturbations, including temperature modu-

lation, cholesterol chelation, and ATP depletion, make it clear 

that any relationships between FRAP behavior and barrier func-

tion must be complex and dependent on many factors. Similar 

questions may be asked about occludin diffusion within the tight 

junction membrane, although controversy remains regarding the 

function of this protein ( Furuse et al., 1993 ;  Chen et al., 1997 ; 

 Sakakibara et al., 1997 ;  Van Itallie and Anderson, 1997 ;  Wong 

and Gumbiner, 1997 ;  Li and Mrsny, 2000 ;  Saitou et al., 2000 ; 

 Kuwabara et al., 2001 ;  Schulzke et al., 2005 ;  Yu et al., 2005 ). 

It is also likely that the constant movement of proteins within the 

tight junction and the observed exchange of these proteins with 

extra-tight junction pools are important to the rapid structural 

and functional responses to stimuli. In the absence of such plas-

ticity, it is perhaps hard to understand how barrier function can 

be modifi ed in minutes. 

 In conclusion, the data presented here show that each of 

the proteins studied is surprisingly dynamic at the tight junction 

and that these dynamics are kinetically distinct as a result of 

different mechanisms of exchange. These results demand that 

the prevailing model of tight junction structure be revised to in-

corporate the idea that interactions between tight junction pro-

teins are transient and characterized by continuous engagement 

and release. Future characterization of the structural domains 

and elements that control the dynamic behaviors of tight junc-

tion proteins promises to fi nally provide molecular character-

ization of tight junction regulation. 

 Materials and methods 
 Plasmids 
 EGFP –  � -actin and EGFP – claudin-1 constructs were generated as reported 
previously ( Shen and Turner, 2005 ). EGFP – claudin-1  � YV  was created by 
site-directed mutagenesis to create a premature stop codon (Stratagene). 
EGFP- and PA-GFP – tagged occludin were generated by PCR amplifi cation 
and cloning of the coding region of human occludin (a gift from R.J. Mrsny, 
Cardiff University, Cardiff, UK) into KpnI – XbaI sites of pEGFP-C1 (Clontech 
Laboratories, Inc.) and PA-GFP (a gift from J. Lippincott-Schwartz, National 
Institute of Child Health and Human Development, National Institutes of 
Health, Bethesda, MD) vectors in frame with EGFP or PA-GFP. EGFP – ZO-1 
was generated by fi rst inserting KpnI sites fl anking the coding region of hu-
man ZO-1 (a gift from J. Anderson and A. Fanning, University of North 
Carolina at Chapel Hill, Chapel Hill, NC) and then cloning the coding re-
gion into the KpnI site of pEGFP-C1 in frame with EGFP. The integrity of all 
plasmids was verifi ed by restriction digestion and direct sequencing. 

 FRAP and FLIP 
 MDCK cells were transfected and maintained as described previously 
( Shen and Turner, 2005 ) and were studied 3 d after confl uence, except 
where otherwise indicated. Monolayers were transferred to bicarbonate-
free HBSS supplemented with 15 mM Hepes, pH 7.4, at 37 ° C and 
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