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ABSTRACT
Epithelial cells are essential to the survival and homeostasis of complex organisms. These cells
cover the surfaces of all mucosae, the skin, and other compartmentalized structures essential to
physiological function. In addition to maintenance of barriers that separate internal and external
compartments, epithelia display a variety of organ-specific differentiated functions. Function is
reflected in overall epithelial structure and organization, shape of individual cells, and proteins
expressed by these cells. More than one epithelial cell type is often present within a single organ
and, in many cases, individual cells differentiate to change their functional behaviors as part of
normal development or in response to extracellular stimuli. This article discusses the diversity of
epithelial structure and function in general terms and explores representative tissues in greater
depth to highlight organ specific functions and their contributions to physiology and disease.
© 2017 American Physiological Society. Compr Physiol 7:1497-1518, 2017.

Didactic Synopsis
Major teaching points
� Epithelial cells work in unison to form barriers that

are necessary for separating self from non-self and pre-
venting mixing of distinct compartments within complex
organisms.

� Epithelial structure and organization varies widely and
reflects the specialized functions of the sites at which
epithelia are found.

� Core functions common to most epithelia include protec-
tion, sensation, transport, secretion, clearance, and repair.

� Polarization of epithelial cells, including development of
distinct plasma membrane domains, targeted protein local-
ization, and cytoskeletal organization is essential to epithe-
lial function.

� Coordinated activity of transmembrane transport proteins
as well as flux across the paracellular pathway, that is, the
tight junction, mediates vectorial transport.

� Disorders of epithelial function can cause and contribute to
disease.

Introduction
Epithelia cover the skin and line the cavities within internal
organs. Here we will focus on organization and function of
the epithelium. Distinctions among epithelia will be discussed
along with commonalities, including fundamentals of organi-
zation, adhesion, polarity, and mechanical coordination.

A common, primary function of all epithelia is to form
a barrier between different organs or compartments within

organs to separate spaces with unique compositions. The
epithelial structures that accomplish this and other tissue-
specific functions vary widely and can be classified according
to cell shape, orientation, and interactions with one another.
Renal tubular, colon, bronchus, alveolar, and skin epithelia
are examples of simple cuboidal, simple columnar, pseudos-
tratified columnar, simple squamous, and stratified squamous
epithelia, respectively (Fig. 1). While these diverse morpholo-
gies correspond to divergent specialized roles, most epithelia
also share many of the following core functions.

Protection: Each organ resides in a unique environment. For
example, the skin is regularly exposed to physical abrasion
that can remove one or more epithelial layers. This would
be an insurmountable challenge for the gut epithelium,
which is composed of a single epithelial layer, but is easily
managed by the multilayered stratified skin epithelium.

Diffusion barrier: Epithelial cells form barriers that separate
distinct compartments, one of which is often the exter-
nal environment. The permeability of these barriers varies,
such that epithelia can be classified as either leaky or tight.
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Epithelial type Sites Features Representative image

Simple cuboidal Renal tubule, thyroid follicle Single layer of cuboidal cells; may have well-

developed brush border

Simple columnar Intestines Single layer of columnar cells; typically 

organized to allow rapid and continuous 

renewal and positioning of stem cells within a 

well-defined niche; well-developed brush 

border; nuclei are uniformly positioned close to 

the basement membrane

Pseudostratified 

columnar

Trachea and upper airways Single layer of columnar cells with striking 

variation in nuclear position, giving the 

appearance of stratification; reserve cells, which 

do not reach to mucosal surface, are capable of 

proliferation to replace damaged or senescent 

cells; may have cilia, which sweep mucus 

Simple squamous Alveoli, glomeruli Flattened, thin cells that form a barrier; shape 

allows rapid diffusion of gases and other 

materials across the cells 

Stratified squamous Skin, oral cavity, esophagus Multilayered epithelium with stem cells as the 

deepest layer. Can be keratinized or 

nonkeratinized. 

Figure 1 Diversity of epithelial cell shape and function.

The skin and urinary bladder, examples of tight epithelia,
are nearly impermeant. In contrast, the small intestine is
much leakier and allows paracellular flux of water, nutri-
ents, and ions. The barrier and transport properties of the
proximal renal tubule are similar to the small intestine,
which is to be expected given the massive solute and fluid
absorption that occurs at both of these sites. Within the
nephron, the paracellular barrier becomes progressively
tighter to generate and maintain the concentration gradi-
ents established by transcellular transport and countercur-
rent exchange.

Sensation: Epithelial cells can sense their environment and
communicate with nerves. Examples include the cilia of
inner ear epithelia that respond to sound waves, as well
as other specialized cells that sense gustatory, visual, and
olfactory stimuli. The tuft cell has recently gained attention
as a sensory epithelial cell within the lungs and gastroin-
testinal tract (77, 100).

Transport: Many epithelia are involved in active and passive
transcellular and passive paracellular transport. In many
cases, this is facilitated by morphological specializations
that markedly increase membrane surface area, such as
intestinal microvilli (Fig. 2).

Clearing luminal materials: Many epithelial cells have cilia,
which aid in moving substances within the lumen and
may also sense fluid pressure and flow. Ciliated colum-
nar epithelial cells are essential for transport of mucus
containing entrapped bacteria and pollutants out of the
airways. Ciliary failure occurs in Kartagener syndrome,
which is characterized by chronic sinusitis, bronchiectasis,
and situs inversus (reversal of the normal organ locations)
(129). The latter emphasizes the role of cilia in defin-
ing left-right symmetry during embryogenesis. Defects in
function of the primary cilium are also responsible for
polycystic kidney disease (23, 60).

Secretion and lubrication: Epithelia transport ions, water,
and other substances that hydrate the luminal surface.
At many sites, the epithelial cells also elaborate mucins
to aid in surface lubrication and support mucosal home-
ostasis. For example, mucins secreted by intestinal goblet
cells contribute significantly to the mucosal barrier and,
among other functions, limit contact between microbes and
the epithelium (224). Defects in transcellular, aquaporin-
mediated water transport are responsible for Sjogren’s syn-
drome, in which lacrimal and salivary gland secretions that
lubricate the eye and oral cavity, respectively, are insuffi-
cient (128, 242, 279).
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Figure 2 Epithelial cell architecture and organization. (A) Fluorescence micrograph of human small intestine labeled for E-cadherin (green),
F-actin (purple), tight junction protein ZO-1 (red), and DNA (blue). Note the localization of each protein: actin is present within the cortical
actomyosin ring and microvillus brush border, ZO-1 as bright puncta at tight junctions, and E-cadherin along basolateral membranes. (B) The
apical junctional complex of an intestinal epithelial cell. Tight junction proteins include claudins, zonula occludens 1 (ZO-1), occludin, and F-actin,
while E-cadherin, α-catenin 1, β-catenin, and F-actin interact to form the adherens junction. Myosin light chain kinase (MLCK) is associated with
the perijunctional actomyosin ring. Desmosomes are formed by interactions between desmoglein and desmocollin, which are bound to keratin
filaments. Integrins form focal adhesions with the extracellular matrix proteins. (C) Transmission electron micrograph showing junctional complexes
between two enterocytes. The tight junction (TJ) is just below the microvilli (Mv), followed by the adherens junction (AJ). The desmosomes (D) are
located basolaterally. (D) Scanning electron micrograph showing microvilli, as viewed from above. (E) Confocal micrograph of cultured small
intestinal epithelial cells labeled for F-actin. In this apical view (from above the cell), microvilli (Mv) can be appreciated as small dot-like structures
due to their F-actin core. The cortical actin ring that forms a belt around each epithelial cell can also be appreciated at the junction between
the two cells shown. (F) Freeze-fracture electron micrograph showing apical microvilli (Mv) and tight junction strands (TJ) in a cultured intestinal
epithelial cell. [Part C from Nature Reviews Immunology (261) and part F from Annual Reviews of Physiology (233) with permission.]
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Regeneration and repair: Due to their inevitable interface with
a hostile environment in many cases, epithelia must con-
tinuously regenerate. The location of the stem cell com-
partment varies among epithelia, but is most often at the
base such that maturing cells migrate toward the lumen.
Loss of normal stem cell growth control can result in can-
cer. Thus, while regeneration and the ability to repair after
injury are essential, they must be precisely regulated to
prevent disease.

Epithelial Development and
Organization
As early as the morula stage, desmosomes and gap junc-
tions are essential to maturation from the solid morula to
the hollowed-out blastocyst. Eventually, three germ layers
develop and each gives rise to unique epithelia: The skin,
renal tubules, and gut are formed from ectoderm, mesoderm,
and endoderm, respectively. Many of these epithelial cells
retain the ability to form a central lumen that was demon-
strated during blastogenesis. This process, lumenogenesis
(160), is essential to development of hollow organs, including
the gut, kidneys, lungs, and airways (79) and can be studied
in vitro (28, 39, 205). Without a lumen, definition of apical
and basal surfaces is difficult. Lumenogenesis can occur by
a number of methods, including budding, wherein invagina-
tion occurs within an existing lumen or sheet of cells, as is
seen in branching morphogenesis within the lungs and kid-
ney. Apical constriction within a region can release these
cells, as occurs during neural tube development (82). Cav-
itation results from apoptosis of centrally located cells and
occurs in mammary ducts (22). Finally, hollowing occurs in
luminal spaces created by cellular invagination or vesicular
budding, which has described in Madin Darby Canine Kidney
(MDCK) cells and possibly occurs in mammalian nephrons
(170).

Epithelial polarization and adherens junction
proteins
Epithelial cells must maintain contact with the basement
membrane or, in the case of stratified epithelia, other cells
that are in contact with the basement membrane (69). The
side of the cell that binds the basement membrane is defined
as basal, while the lumen-facing surface is termed apical, and
the surface in contact with adjacent cells (in the case of simple
epithelia) is the lateral membrane. These three surfaces differ
in morphology, protein and lipid composition, and function.
Generation and maintenance of polarity is, therefore, essential
for specialized epithelial functions such as vectorial transport
of ions and nutrients (6). This is so important that it extends to
epithelial regeneration, and mitotic spindle orientation is pre-
cisely controlled during division of polarized epithelial cells
(208).

Epithelial cell interactions with the basement membrane
are, primarily, mediated by integrins, cell surface receptors
that can bind to extracellular matrix proteins (147). These
interactions are also essential for establishing and maintaining
epithelial polarity on both the cellular and tissue level (28,
300). Different types of integrins attach to matrix proteins by
recognizing typical amino-acid motifs, such as the RGD (Arg-
Gly-Asp) motif in fibronectin (202). On lateral membranes,
integrins mediate interactions between epithelial cells and
adjacent cells, including immune cells and pathogens (15,70,
257).

The first intercellular junctions that develop when epithe-
lial cells make direct physical contact with one another are the
adherens junctions (zonula adhaerens, Fig. 2) (59). These are
not unique to epithelia; E-, N-, and VE-cadherins are found
in, and can be used to define, epithelial, neural, and endothe-
lial cells, respectively. Differential cadherin expression allows
cells to “recognize” one another and bind to similar cells,
which facilitates tissue organization (82). Other adhesion
complexes include ephrin receptors and ligands, which are
both expressed on cell surfaces; their interaction strengthens
intercellular binding. Adherens junctions also contribute to
contact inhibition, a form of growth control (127). This signal-
ing is disrupted in many epithelial tumors, some of which tran-
scriptionally repress E-cadherin, which is encoded by CDH1.
Loss of E-cadherin-mediated intercellular adhesion explains
the dyscohesive pattern of tumor infiltration that typifies lobu-
lar carcinomas of the breast and signet ring cell gastric cancers
(20, 239). Germline mutations in CDH1 are also responsible
for some familial gastric cancers (81). In other cases, epithe-
lial to mesenchymal transition (EMT) is accompanied by a
shift from E-cadherin to N-cadherin expression.

E-cadherin recruits other proteins to intercellular junc-
tions. These include the perijunctional ring of actin and
myosin filaments to which E-cadherin is connected via
cytoplasmic linker proteins α-actinin and α- and β-catenins
(49, 130, 294). The cytoplasmic domain of E-cadherin binds
to β-catenin, which is then linked to the F-actin meshwork
by α-catenin. This latter protein recognizes the mechanical
force developed due to cell-cell adhesion developed by cad-
herin, and responds to this force by unfurling, which exposes
cryptic sites open to regulation by vinculin and other junction
related proteins (13, 152, 297). These interactions between
E-cadherin and the cytoskeleton are, in turn, essential for cell
polarization and differentiation. Consistent with the idea that
aberrant epithelial polarization may contribute to neoplasia,
mutations in β-catenin and its regulator adenomatous poly-
posis coli (APC) protein are common early events in human
colorectal cancer development (78, 132, 173, 181).

E-cadherin trafficking is associated with and dependent
on (282) the cytoplasmic polarity protein PALS1 (Protein
Associated with Lin Seven one). PALS1 binds to the api-
cal transmembrane protein crumbs3 (Crb3) as well as a sec-
ond cytosolic protein PATJ (PALS1-associated tight junction
protein). This complex is essential for defining the apical
membrane (288). Consistent with this, genetic deletion of
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Crb3 results in neonatal death due to polarization and apical
membrane function defects in intestines, kidneys, and lungs
(288). Interestingly, the phenotype of mice lacking the apical
actin-binding and linker protein ezrin is identical similar to
that of Crb3 knockout mice (34,225,288), which may be due
to an ezrin-binding domain within Crb3 (64).

Basolateral membrane domains are established, in part,
by competition between the apical complex and a corre-
sponding basolateral complex composed of Dlg (discs large),
Scrib (scribble), and Lgl (lethal giant larvae) (295). These
complexes actively repel one another; overexpression or
loss of components of either complex increase or reduce,
respectively, the size of the corresponding membrane domain
(38,254). Finally, a complex composed of cdc42, Par6, Par3,
and atypical protein kinase C defines the position of the api-
cal junctional complex (56, 115). This depends, at least in
part, on binding of PALS1 to Par6 (partitioning defective 6)
and the resulting linkage between the PALS1/PATJ/Crb3 and
Cdc42/Par6/Par3/atypical protein kinase C complexes that
maintain the apical membrane and apical junctional complex,
respectively (64, 104, 220).

While specific roles in polarization of mammalian epithe-
lia have not been defined for other members of the Par protein
family, it is interesting to note that mutation of LKB1 (Liver
Kinase B1), the mammalian ortholog of the C. elegans protein
Par4 is associated with Peutz-Jeghers syndrome (93,113,283).
Peutz-Jeghers syndrome is characterized by gastrointestinal
hamartomatous polyps (16). This can be understood when one
recognizes that hamartomas represent disorganized masses
composed of cell types that are otherwise appropriate for the
site in which the lesion is found. Peutz-Jeghers syndrome
patients also have increased susceptibility to gastrointesti-
nal tract cancers, suggesting that the serine/threonine kinase
LKB1 may be a tumor suppressor (93). Consistent with the
links between cancer and loss of polarity, LKB1 activation
by STRAD (STE20-related kinase adaptor) is sufficient to
trigger epithelial polarization in the absence of the otherwise
essential cues provided by E-cadherin engagement (10). Con-
versely, loss of E-cadherin signaling-dependent growth con-
trol, that is, contact inhibition, may occur in the absence of
LKB1 due to upregulation of Wnt5a, which has been reported
in both Lkb1+/− mice and polyps from Peutz-Jeghers patients
(140).

Desmosomes
As noted earlier, the adherens junction is the first intercellu-
lar junction formed when epithelial cells contact one another.
In addition to supporting the development of separate api-
cal and basolateral domains, the adherens junction and asso-
ciated Cdc42/Par6/Par3/atypical protein kinase C complex
position the apical junction complex (Fig. 2), which consists
of the tight junction (zonula occludens), adherens junctions
(zonula adhaerens), and desmosomes (macula adhaerens)
(59). Together these junctions maintain polarity, seal the
paracellular space, provide intercellular communication, and

stabilize intercellular contacts to preserve overall epithelial
integrity.

The adherens junction is located directly below the tight
junction and followed closely by the desmosomes (59). The
latter are composed of the desmosomal cadherin proteins
desmoglein and desmocollin. In a manner that is analogous to
catenin-dependent binding of E-cadherin to F-actin, desmo-
somal cadherins bind to keratin intermediate filaments via
the cytoplasmic plaque proteins plakoglobin and desmoplakin
(240,291). This allows keratin filament networks within adja-
cent cells to be stably anchored to one another and provide
tensile strength to epithelial structures. The importance of
desmosomes is highlighted by the rare, blistering diseases
caused by autoantibodies to desmosomal proteins (101,219).
In these diseases, defective desmosomal intercellular adher-
ence allows adjacent cells within the skin and other stratified
squamous epithelia to separate from one another. Fluid accu-
mulates in the resulting spaces, causing severe blistering and,
ultimately, sloughing of epithelial sheets.

Tight junctions and paracellular permeability
The epithelial cell membranes are sufficient to form a barrier
to macromolecules, hydrophilic solutes, including ions, and
water. However, all of these materials could, potentially, tra-
verse the paracellular shunt pathway at sites of cell junctions.
The adherens junctions and desmosomes provide strength that
holds adjacent epithelial cells to one another (Fig. 2B), but
these junctions do not seal the shunt pathway. That duty falls
to the tight junction, the component of the apical junctional
complex that is closest to the lumen (Fig. 2B). In simplest
terms, tight junctions across various epithelia can be referred
to as “tight” or “leaky” based on their permeability. For exam-
ple, the urinary bladder is a tight epithelium with very little
transepithelial ion conductance, i.e. high electrical resistance.
In contrast, the small intestine is a leaky epithelium with sub-
stantial paracellular flux of ions, nutrients, and water. When
examined by freeze fracture electron microscopy, tight junc-
tions appear as an anastomosing series of strands that extends
approximate 200 nm beneath the apical surface (Fig. 2C
and F). In general, greater numbers of strands correlate with
higher resistance (42). The specific protein composition of
the tight junction also has a profound effect on paracellular
permeability.

The tight junction also demarcates the boundary between
apical and basolateral membranes; the adherens junction is
located within the basolateral domain, where E-cadherin dec-
orates the entire basolateral membrane surface in many epithe-
lia. As a result, the tight junction has been suggested to have
a fence function that prevents mixing of transmembrane pro-
teins and lipids between apical and basolateral domains (168).
However, perturbations that inhibit development of barrier
function do not prevent polarized distribution of membrane
proteins and specialized membrane structures, for exam-
ple, microvilli (11, 194, 238, 268). Therefore, tight junctions,
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which contribute to the organization of multicellular struc-
tures (194), are not essential for epithelial polarization.

Although the complete composition of tight junction
strands remains to be defined, it is clear that their assembly
is catalyzed by claudin proteins. The claudins are a family
of 27 genes (178) that encode ∼20 kD proteins with short
intracellular N- and C-termini, 4 transmembrane domains,
and 2 extracellular loops (ECLs) (135). Claudins can develop
homotypic or heterotypic interactions in cis or trans orienta-
tions. This leads to development of claudin polymers, whose
structure is just now being elucidated (250, 251). Whether
these polymers comprise or merely direct assembly of the
tight junction strands seen by freeze-fracture microscopy
remains an open question (156).

The first ECL (ECL1) of channel-forming claudins forms
the pore and at least part of the paracellular channel. These
channels are exquisitely size selective, with a maximum
diameter of ∼6 Å, and are also charge-selective (274, 298).
In the gastrointestinal tract, most channel-forming claudins,
for example, claudin-2 and claudin-15, are cation-selective,
meaning they preferentially allow paracellular flux of cations
over that of anions. Other channel-forming claudins, for
example, claudin-10a and claudin-17, preferentially accom-
modate Cl−, HCO3−, and NO3

− anions (137, 138, 275). In
contrast to the intestines, anion specific claudins are abun-
dant in renal tubules and salivary glands (185, 186). While
recent data show that claudin-based channels open and close
in a manner similar to transmembrane ion channels (284), it
should be recognized that the specificity of channels for dif-
ferent ions of similar size and charge is limited relative to that
of transmembrane ion channels.

Some claudin proteins do not form channels, but their
expression enhances the paracellular barrier by mechanisms
that remain to be defined (272). The repertoire of claudin
proteins expressed at any specific site is therefore a prin-
cipal determinant of both barrier function and paracellular
permeability to ions and water. Not surprisingly, expression
of individual claudins varies along the length of the gastroin-
testinal tract, along the crypt villus axis, during development,
and in the context of disease (55, 96, 209). Similar variability
occurs along the length of the nephron (99).

While they are essential, claudins are not sufficient to
form tight junctions (226, 276). A large number of other
proteins are also present at tight junctions, including both
transmembrane and peripheral membrane proteins. Among
these, the most important appear to be the zonula occludens
(ZO) family, composed of the scaffolding proteins ZO-1,
ZO-2, and ZO-3, and the tight junction-associated Mar-
vel proteins (TAMPs), occludin, tricellulin, and MarvelD3
(58, 71, 88, 107, 114, 211, 216, 241, 243). ZO family proteins
contain PDZ domains that attach to a PDZ-binding motif at
the C terminus of most claudins and contribute to claudin
recruitment to the tight junction (14, 57, 210). Specific func-
tions of the TAMPs have been more difficult to define, but
it is becoming clear that they can regulate both claudins and
other aspects of barrier function. Among these, mutations in

tricellulin have been shown to be a cause of hereditary deaf-
ness (190, 216).

Ion and nutrient transport
Many epithelia transport nutrients, ions, and water. The spa-
tial distribution of these transport proteins is essentially what
makes a cell ‘polar’ in terms of both protein distribution and
development of electrochemical gradients for the net move-
ment of molecules across membranes. Common transporters
include:

Cystic fibrosis transmembrane conductance regulator
(CFTR): CFTR is an ATP-binding cassette (ABC) trans-
porter found within apical membranes of gastrointestinal,
pulmonary, hepatobiliary, and renal epithelia (180, 244).
The channel is normally gated by ATP hydrolysis, but can
be massively activated by cyclic AMP generated as a result
of cholera toxin activity (80). The resulting intestinal chlo-
ride secretion creates the osmotic gradient that is respon-
sible for the severe diarrhea that characterizes cholera.
Conversely, CFTR defects result in failure to generate the
osmotic gradient that is necessary for fluid secretion and
mucin hydration, as exemplified by the use of mucovisci-
dosis to describe cystic fibrosis (136,157). In the absence of
CFTR-dependent luminal hydration, pulmonary mucocil-
iary clearance fails and mucus plugs obstruct pancreatic
ducts leading to recurrent pneumonia and exocrine pan-
creatic insufficiency, respectively. Over 1,000 CFTR muta-
tions have been described, most of which disrupt traffick-
ing of the transporter to the apical membrane.

Na+-glucose cotransporters (SGLT): The SLC5 family trans-
porters SGLT1 and SGLT2 transport glucose across the
apical membrane. SGLT1 is expressed in the intestines,
while both SGLT1 and SGLT2 are expressed in the renal
tubules (62, 85). The coupling of glucose transport with
that of Na+ allows glucose to be absorbed against a con-
centration gradient using the extracellular to intracellular
Na+ gradient as a driving force. Transport of each glucose
molecule requires the energy provided by one or two Na+

ions, for SGLT2 and SGLT1, respectively (120, 148).

Facilitated glucose transporters (GLUT): This large family
of SLC2 nutrient transporters (32) is expressed through-
out evolution (290). In mammalian epithelia, GLUT fam-
ily transporters traffic primarily to the basolateral domain
where GLUT2 ensures that glucose absorbed via SGLT1
and SGLT2 is able to exit the cell (149). Some GLUT
transporters, for example, GLUT2 and GLUT5, traffic to
the apical membrane where they mediate absorption of
nonglucose hexoses, such as fructose (124, 166).

Na+-H+ exchangers (NHEs): Eight NHE isoforms exist, with
NHE1 being expressed ubiquitously. NHE2 and NHE3
are expressed in lung, intestinal, and renal epithelia where
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Figure 3 Comparison of small intestinal and colonic mucosal architecture. (A) Low-
magnification image of hematoxylin and eosin-stained section of normal human duodenum.
The mucosa can be separated into villus, crypt, and muscularis mucosae (m. mucosae) and sits
atop the submucosa. The villi greatly expand mucosal thickness. (B) Low-magnification image
of hematoxylin and eosin-stained section of normal human distal colon. The mucosa can be sep-
arated into surface, crypt, and muscularis mucosae (m. mucosae) and, like the small intestinal
mucosa, rests on the submucosa.

they traffic to the apical membrane (97). The electrochem-
ical gradients created by these SLC9 family exchangers
are critical to water transport: Nhe3 knockout in mice
results in chronic malabsorptive diarrhea and defective
water absorption in the proximal tubule (232). In humans,
NHE3 missense mutations result in congenital diarrhea
(112). Reduced NHE3 activity also contributes to malab-
sorptive diarrhea in inflammatory bowel disease (144,248)
and may promote disease-associated dysbiosis (143, 145).

Na+-K+-Cl− cotransporters (NKCC): Like apical SGLT
transporters, these SLC12 family transporters use the Na+

gradient to drive electroneutral absorption of one Na+, one
K+, and two Cl− ions into the cell. Basolateral NKCC1
provides the Cl− ions that are secreted via CFTR in some
forms of diarrhea (215). In the kidney, NKCC2 mediates
absorption of these ions across the apical membrane in the
thick ascending limb (TAL) of the nephron (7, 74, 304).

Epithelial Na+ channel (ENaC): These channels are expressed
on the apical membrane of highly resistive epithelia,
including the distal colon, bronchi, distal tubule, and col-
lecting duct of the kidneys (50,54,68,196). ENaC is upreg-
ulated by aldosterone and glucocorticoids and is important
for Na+ absorption. Interactions between ENaC and CFTR
are of pathophysiological importance in cystic fibrosis,
where ENaC is upregulated in the absence of a functional
CFTR (214). ENaC is a target of diuretics, for example,
amiloride, that inhibit ENaC-dependent Na+ absorption
and, by osmotic means, increase urinary volume (196).

Compartmentalization of epithelial functions
Compartmentalization may be most obvious within the small
intestine, where distinct functions are distributed along a
longitudinal axis, from duodenum to terminal ileum, as well

as a vertical axis, from crypt to villus (Fig. 3). At the base of
each villus, the epithelium invaginates into the lamina propria
and forms the crypts of Lieberkühn (131). Each crypt con-
tains stem cells that are responsible for renewal of crypt and
villous epithelium (269). As a result of the patterned organiza-
tion of crypts and villi within the small intestine, each villus is
populated by cells derived from multiple crypts. The primary
proliferative compartment is within the crypt base, where the
rapidly cycling, LGR5-expressing stem cell pool is present
(12, 111, 296). These cells are susceptible to chemotherapeu-
tic agents and radiation, both of which interfere with DNA
replication. Other cells repopulate the LGR5-expressing stem
cell pool under these conditions (206, 234, 259, 292). Within
the small intestine and proximal colon, the crypts also contain
Paneth cells (167, 203, 301), which contain large cytoplas-
mic granules within the apical cytoplasm. Among other sub-
stances, these granules, which can be secreted into the lumen,
contain antimicrobial peptides that help to maintain the rel-
atively sterile composition of the crypt (40, 53, 286). Paneth
cells also synthesize factors that promote development and
maintenance of the stem cell niche (227, 271). As newly cre-
ated cells exit the crypt base, they enter the transit-amplifying
zone, a region at the top of the crypt where mitosis continues
and increases the number of daughter cells produced exponen-
tially (218). The undifferentiated transit-amplifying cells have
secretory capacity and are the primary epithelial cells that
secrete Cl− in response to pathogens and toxins, e.g. cholera
toxin (41). As they migrate toward the villus mitosis ends
and the cells differentiate into absorptive enterocytes, goblet
cells, and enteroendocrine cells (159). As a reflection of these
disparate functions, epithelial transport proteins are differen-
tially expressed along the crypt:villus axis. For example, the
apical and basolateral Cl− transporters (CFTR) (Fig. 4A) and
the Na+-K+-Cl−cotransporter NKCC1 (Fig. 4B) are primarily
expressed in the crypt base (244) and transit-amplifying zone
(215). Conversely, the Na+-H+ exchanger NHE3 (Fig. 4C)
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Figure 4 Segregation of epithelial transport proteins along the crypt:villus axis. Fluorescence micrographs of human small intestine labeled
for E-cadherin (red), F-actin (purple), and DNA (blue). (A) Note the localization of CFTR (green) to the apical membrane of epithelial cells within
the lower villus and crypt, the principal site of chloride secretion. (B) Note that NKCC1 (green) is expressed in the same population of cells
that expressed CFTR but is localized to the basolateral membrane, where colocalizes with E-cadherin. (C) NHE3 (green) is localized to the
apical membrane and predominantly expressed on cells within the villus, where the bulk of absorption takes place. (D) Similar to NHE3, SGLT1
(green) is localized to the apical membrane of villous absorptive enterocytes. Bright autofluorescence (green) of red blood cells highlights villous
capillaries that run just beneath the basement membrane is present in some images (particularly panel C). (E) These transporters are expressed
throughout small intestine and colon; similar transporters are expressed within the nephron in a site-specific manner.

and Na+-glucose cotransporter SGLT1 (Fig. 4D) are primarily
expressed in the villus at the brush border (apical) membrane
(106). Although the renal tubules are only organized along a
single axis, from proximal tubule to collecting duct, a sim-
ilar functionally compartmentalized organization is present
(Fig. 4E).

Mucosal secretion
The efficacy of mucosal barriers can be measured by multiple
parameters including the immune barrier, the physical barrier
to microorganisms, and the physical barrier to solutes, ions,
and water. Each of these is defined by distinct components of
the mucosa. The immunological barrier includes both innate
and adaptive arms of the immune response and is essential
to prevent infection and sepsis. Particularly in the case of the

gastrointestinal tract, the mucosa is also the primary site at
which the immune system encounters antigens and, therefore,
plays an important role in immune education.

Despite intestinal colonization by diverse microorgan-
isms, most intestinal epithelial cells do not come into direct
contact with the microbiota. This is largely due to mucin,
which in the case of the intestines is secreted by goblet cells
(116). Mucins are organized into a single loose mucus layer
within the small intestine. In the colon, where bacterial colo-
nization is far higher, an inner mucus layer that is physically
attached to the epithelial cells by means of transmembrane
mucin proteins is present beneath the loose outer layer (117).
Bacteria can infiltrate the outer mucus layer but are excluded
from the denser inner mucus layer.

Mucus is composed of proteins that are glycosylated such
that about 80% of their mass is carbohydrate. The core mucin
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proteins are encoded by at least 20 different genes in humans.
MUC2 is the predominant mucin expressed in the small
intestine and colon (117, 118). In mice, deletion of the Muc2
gene leads to spontaneous intestinal disease, demonstrating
the importance of mucins to mucosal protection (19, 270).

In addition to preventing large objects, including undi-
gested food and microbes, from directly contacting the epithe-
lial surface, mucus creates a zone in which luminal fluids are
not mixed uniformly. This unstirred layer allows brush bor-
der digestive enzymes to break down complex proteins, fats,
and carbohydrates and generate high local concentrations of
the resulting smaller molecules that are amenable to transport
across the epithelium (197). Beneath the unstirred layer lies
the epithelium, which forms the barrier to macromolecules,
ions, and water. Similarly, goblet cells within airway epithe-
lium secrete mucins that lubricate the surface and capture
particulates and microbes; thereby limiting entry of these
materials into the alveolar airspaces (89).

Polarized protein delivery
Polarized delivery of proteins and lipids to the plasma mem-
brane is essential for epithelial cell organization and func-
tion. In most polarized cells, basolateral surface proteins are
delivered directly to that domain, possibly to specific sites
within lateral membranes (121). The targeting information
is encoded by amino acid sequences within the cytoplasmic
tail, or sometimes, the N-terminal domain, as with E-cadherin
(33). In some cases, these tyrosine-containing sequences are
sorted by the epithelial adapter protein AP-1B (87, 252). The
vesicular transport process, which is also involved in endo-
cytic recycling of apical and basolateral membrane proteins,
involves members of the Rab family of small guanosine
triphosphate (GTP)-binding proteins and SNARE proteins
that target delivery of transport vesicles to specific membrane
domains (65).

Apically targeted proteins can be transported by both
direct and indirect pathways (204, 231). Proteins that traffic
directly to the apical membrane include those that associate
with glycolipid- and cholesterol-rich membrane domains,
such as the apical hydrolase sucrose-isomaltase, and may also
be transported along actin microfilaments (37,142,223,287).
Ectodomain glycosylation sites and transmembrane protein
domains have been implicated in apical trafficking (26), but
have been more difficult to identify than their basolateral
counterparts.

Some proteins have special functions that require them
to traverse a more complicated route. One example is the
polyimmunoglobulin receptor (pIgR), which initially traffics
to the basolateral membrane where it binds to IgA released
by lamina propria plasma cells. Upon IgA binding, the lig-
ated pIgR is endocytosed and directed to fuse with the apical
plasma membrane (247). Here, proteases cleave pIgR, part
of which is released as the secretory component protein that
cross-links IgA molecules (35, 163). In addition to specific
targeting sequences within pIgR, transcytosis also relies on

tracks defined by microtubules. It remains unclear as to why
some apical proteins, without any specific basolateral func-
tions also take this indirect pathway. Nevertheless, this mech-
anism is useful to correct errors in initial trafficking of apical
proteins and for membrane protein sorting during the early
stages of epithelial polarization.

Maintenance of membrane domains
Once delivered to the correct plasma membrane domain, it is
important that proteins be retained. This frequently depends
on interactions with actin-based cytoskeletal proteins. For
example, the Na+,K+-ATPase is stabilized on the basolat-
eral membrane domain by attachment to the cytoskeleton
through the linker proteins ankyrin and spectrin (192). E-
cadherin bound to p120 catenin is stable at the membrane,
but is targeted for endosomal recycling once detached, which
can be regulated by RhoGEFs and GAPs (29,146). Some dif-
ferentiated epithelial cells have special functions that require
intricate structures, such as the apical secretory canaliculi
and microvilli of parietal cells and enterocytes, respectively.
Organization and maintenance of these domains is guided by
ezrin–radixin-moesin (ERM) proteins, which are evolutionar-
ily conserved in organisms including C. elegans, Drosophila,
and mammals, and are found in many cell types, including
epithelia and lymphocytes (191). ERM proteins have separate
cargo-binding and actin-binding domains. The cargo-binding
domain can interact with transmembrane and peripheral mem-
brane proteins either directly or through accessory proteins,
such as NHERF-1, NHERF-2, and PDZK1 (141, 228). As a
result, ERM proteins can organize signaling complexes. For
example, the cystic fibrosis transmembrane regulator (CFTR)
binds to NHERF-2 PDZ domains, which stabilize CFTR at
the apical membrane (Fig. 4A) and tether it to protein kinase
A. This enhances the ability of protein kinase A to activate
CFTR (17, 189). Ezrin is also involved in trafficking of the
apical Na+/H+ exchanger NHE3 to the enterocyte brush bor-
der (Fig. 4C) following initiation of Na+-glucose cotransport
and of the gastric H+K+-ATPase to parietal cell canalicular
membranes after histamine stimulation (154, 230, 302).

Maintenance of the polarized distribution of plasma mem-
brane transport proteins is essential to nutrient transport
(108,264). In addition to allowing hydrophilic solutes to cross
the apical membrane, transmembrane transporters create the
ionic and electrochemical gradients that are essential to move-
ment of water and passively transported solutes. They help in
maintaining the pH of the gut lumen and allow symbiotic
microbes to thrive. This is especially true for the ileum and
the colon, where CFTR mediated transport of Cl− and short-
chain fatty acid dependent secretion of HCO3

− regulates lumi-
nal pH. Defects in bicarbonate secretion or pH neutralization
leads to inflammation and altered microbiome composition in
CFTR knockout mice (21, 236).

At the microvillus brush border, the Na+-glucose cotrans-
porter SGLT1 (Fig. 6D) uses the extracellular to intracellu-
lar Na+ gradient to transport one glucose and two Na+ ions
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Figure 5 Epithelial glucose transport as a model of Na+-coupled nutrient absorption. (A) Glucose (Glu) absorption begins with transport across
the apical, brush border membrane via SGLT1-mediated Na+ cotransport. Both glucose and Na+ diffuse to the basolateral membranes where
they exit the cell by way of GLUT2 and Na+K+ATPase, respectively. As described in the text, this and the many other Na+ absorptive pathways
present can deplete Na+ from the lumen and thereby inhibit further absorption. Tight junction proteins claudin-2 and claudin-15 allow Na+

to diffuse, passively, across the tight junction according to the concentration gradient to replenish luminal stores and allow continued nutrient
absorption. (B) Fluorescence micrograph of human small intestine labeled for Na+K+ATPase (green), E-cadherin (red), F-actin (purple), and DNA
(blue). Note the localization of the Na+K+ATPase to the basolateral membranes of villus and crypt epithelial cells. (C) Claudin-15 (green) is
distributed in a dot-like pattern at epithelial cell junctions. By light microscopy, claudin-15 appears to colocalize with the very apical extent of
E-cadherin, which is otherwise restricted to the basolateral membrane as well as the dense cortical (perijunctional) F-actin ring.

across the apical membrane (260). GLUT2, a facilitated tran-
porter located on the basolateral surface, then allows glucose
to diffuse across the membrane to the interstitium (Fig. 5A)
(36, 45). This arrangement allows GLUT2 to operate in the
reverse direction to provide glucose to intestinal epithelial cell
from the blood stream when luminal nutrients are not present
(2, 123). Finally, Na+ is transported across the basolateral
membrane via the Na+K+-ATPase (Fig. 5B). The initiation
of apical Na+-glucose cotransport triggers a MAP kinase cas-
cade that induces trafficking of Na+/H+ exchanger 3 (NHE3)
from intracellular storage pools to the apical membrane
(83,102,154,302). NHE3 translocation further enhances tran-
scellular Na+ absorption. At the same time, myosin light chain
kinase (MLCK) activation increases tight junction perme-
ability to facilitate passive, paracellular water and nutrient
absorption (177, 262, 263). In this manner, SGLT1-mediated
Na+-glucose cotransport initiates a sequence of events that
activate multiple modes of nutrient absorption. The driving
force for all of these is the Na+ concentration gradient across
the apical membrane that is, ultimately, maintained by the
activity of the basolateral Na+K+-ATPase (Fig. 5B). This pro-
cess cannot continue if the luminal-cytoplasmic Na+ gradient
is not maintained or if luminal Na+ is depleted. The former
is avoided by providing metabolites that allow intracellular
ATP generation. The latter depends on recycling of absorbed

Na+ from the basolateral interstitium back into the lumen.
Recent data indicate that this Na+ recycling requires either
claudin-2 or claudin-15 (Fig. 5C), which are tight junction
proteins that form paracellular Na+ channels. This process
exemplifies many of the vectorial transport systems that are
essential functions of polarized epithelia.

Random distribution of transporters to both apical and
basolateral domains would markedly disrupt glucose absorp-
tion and could even lead to net glucose secretion into the
lumen. Similar problems can be envisioned for just about any
of the transmembrane and transport proteins. Thus, partic-
ularly in transporting epithelia, including the gut and renal
tubules, maintenance of polarity is absolutely required for
continued physiological function.

Organization of the cytoskeleton
The villus absorptive enterocyte has been a useful model for
studies of cytoskeletal structure and function in polarized
epithelia. Columnar epithelial cells (Figs. 1 and 2A) require
support to maintain their shape; without a cytoskeleton, they
would collapse into a more thermodynamically favorable
sphere. Cell shape depends on networks of actin micro-
filaments that lie beneath the apical and basolateral mem-
branes and are cross-linked with spectrin and other proteins.
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Intermediate filaments and microtubules also support the
basolateral compartments and intercellular junctions (195).

Microfilament (actin) bundles also form the microvillus
cores. Assembly of microvilli also depends on intracel-
lular myosins and ERM proteins as well as extracellular
mucin-like protocadherin and protocadherin-24 that provide
inter-microvillar linkage (46, 228). Myosin-1a is particularly
important in stabilizing microvilli (278), and, although
mice lacking myosin-1a are viable and grow normally, the
morphology of the brush border is disturbed (175), levels of
the enzyme sucrose isomaltase are reduced, and myosin-1c is
aberrantly localized to microvilli (176,265). The microvillous
actin bundles integrate with the terminal web composed
of actin and type II myosin that interfaces with the apical
junctional complex (122, 162) (Fig. 2A and E).

Microtubule organization in polarized epithelial cells is
distinct from that of non-polarized cells, where microtubules
radiate from a single microtubule-organizing center adjacent
to the nucleus. In polarized epithelia, microtubules are aligned
apicobasally (76) where they support trafficking of kinesins
and dyneins. These motors transport vesicles along micro-
tubule arrays, and are particularly important in transcytosis,
as occurs during IgA secretion (73).

The role of the cytoskeleton can be modified and manip-
ulated by certain pathogenic and nonpathogenic microorgan-
isms in the gut. Listeria monocytogenes, which can cause
often gastroenteritis, interacts with E-cadherin (exposed dur-
ing cell extrusion on the villus tip) via bacterial internalin
proteins (24, 201), and then uses phospholipases to slip

into the cytoplasm. Here, Listeria replicate and express the
actA protein (47), which polymerizes actin to form ‘comet
tails’ that propel the bacterium and allows penetration across
membranes into neighboring cells. Cytoskeletal elements are
therefore not only important to enterocyte structure, but also
for physiological function and disease propagation.

Organ Specific Epithelial Organization
and Function
Renal tubular epithelium
The nephron is the basic functional unit of the kidney, which
allows re-absorption of most ions and nutrients from the
glomerular ultrafiltrate. Similar to the intestinal epithelium,
nephrons are lined by epithelia expressing transport pro-
teins that are similar, and sometimes identical, to those of
the intestines (Fig. 6). In the kidneys, SGLT2, which co-
transports one Na+ ion to provide the driving force each glu-
cose molecule, mediates the bulk ofglucose reabsorption in
the proximal tubule S1 segment. SGLT1, which, uses the
energy provided by cotransport of two Na+ ions to transport
each glucose molecule and can function in the absence of a
glucose concentration gradient, and absorbs remaining glu-
cose in S2 and S3 segments (171). Familial renal glucosuria
is due to defects in SGLT2 (SLC5A2) (4, 171), while SGLT1
and SGLT2 inhibition are used to induce renal glucose wasting
in some diabetic patients. Disruptions of Na+-Cl− transport
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transcription and enzymatic activity. These lead to endocytic removal of occludin from the tight junction and increased leak pathway permeability.
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due to mutations in the thiazide-sensitive Na+-Cl− symporter
(NCC, SLC12A3) or other transporters, including NKCC2
(SLC12A2) and the Cl− channel (CLCNKB), result in Gitel-
man syndrome and Bartter syndrome, respectively (134).
These disorders are both characterized by metabolic alka-
losis, hypokalemia, and Mg2+ deficiency; Bartter syndrome
patients also display Ca2+ deficiency while, for reasons that
are not yet clear, Gitelman syndrome actually enhances renal
Ca2+ absorption (133, 235). Because the diuretic furosemide
targets NKCC2, patients taking this drug can occasionally
develop symptoms similar to Gitelman syndrome. Although
renal claudin-2 expression is not essential, it does increase
the efficiency of Na+ recovery from the tubule lumen by
coordinating with transcellular Na+ absorption (200). Other
claudins expressed within the nephron include the anion selec-
tive claudins 10a and 17 (186). Unlike the intestine, which
is discussed below, aquaporins play a major role in water
transport. In the collecting duct, vasopressin dependent AQP2
function is an essential determinant of urinary water volume
(105, 179, 193, 279).

Lung epithelium
From the trachea to the airspaces, epithelial cells form the
lining of the respiratory tract. The trachea and airways are
lined by ciliated, undifferentiated columnar, secretory, and
basal cells arranged as a pseudostratified epithelium (289).
Airway epithelial cells maintain the surface liquid balance
by the concerted actions of plasma membrane channels and
tight junctions (229). Airspaces are lined by type I alveolar
epithelial cells, which are large, flat cells that allow diffusion
of gases between airspaces and capillaries (Fig. 1). Type I cell
junctions are mainly responsible for alveolar epithelial barrier
function (229). Type II alveolar cells are smaller, cuboidal,
and have a granular cytoplasm. These cells secrete surfactant
and are able to proliferate and differentiate to replace damaged
type I pneumocytes.

Skin
The integument, or skin, is the largest organ within the human
body and consists of the epidermis and subjacent dermis. The
epidermis is composed of stratified squamous epithelium,
which allows superficial layers to be eroded by surface trauma
without substantial barrier loss. In skin, the basal layer of
the epidermis consists of keratinocytes that are capable of
division. Their progeny move upward to form the polyhedral
spinocytes (27, 72, 249). Ultimately, the most superficial
cells flatten, become anucleate, and compress into dense
keratin bundles (Fig. 1). In addition to the interfollicular
stem cells, damaged epidermis can also be replaced by stem
cells within hair follicles, sebaceous glands (61, 153, 212). In
some species, the esophagus, which is lined by a squamous
stratified epithelium, is keratinized as well (98). As might be
expected, these are species whose diet includes dry, abrasive
materials, such as rodents (213). In contrast, keratinization

of the esophageal epithelium only occurs in humans as a
reactive process following chronic damage.

Urinary bladder
The urinary bladder presents a special problem for epithelia.
The mucosal surface must expand markedly as urine accu-
mulates. This could, potentially, be accomplished by thick
mucosal folds, such as the gastric rugae. Instead, the bladder
is lined by a stratified epithelium composed of a proliferative
basal layer, an overlying intermediate layer, and, finally, a
superficial cell layer (1, 150, 151). The latter, referred to as
umbrella cells, are normally cuboidal. As the bladder fills and
the mucosa is stretched, umbrella cells become large flattened
cells that are able to maintain the barrier to water and ions.
This near absolute barrier function is essential to maintain the
concentrated or dilute urine generated by the kidneys.

Gastrointestinal Tract
The small intestine and colon, or large intestine, comprise
the lower gastrointestinal tract. These organs are both essen-
tially hollow tubes, with average lengths of 6 m and 1.2 m,
for small intestine and large intestine respectively, in humans
(91). Anatomically, the small intestine is broken into three
sections; duodenum, jejunum, and ileum, from proximal to
distal. Each of these regions has distinct functions, as dis-
cussed below. Functions as well as the composition of lumi-
nal contents differ significantly in terms of water, ion, and
microbial content throughout the length of the small intestine
and colon in a manner that corresponds to regional changes in
epithelial function. Specialized functions of the small intes-
tine and colon include:

Secretion: The proximal duodenum contains the mucosal
Brunner glands, which secrete bicarbonate to neutralize
the acidic contents received from the stomach. In gen-
eral, large amounts of fluid secreted by the salivary glands,
stomach, and small intestine mix with ingested liquids to
hydrate the contents of the intestinal lumen.

Digestion: The “ampulla of Vater,” located in the duodenum,
acts as a conduit for biliary and pancreatic secretions,
which aid in digestion and are also a source of water enter-
ing the intestinal lumen. Bile helps to emulsify dietary fats
and form micelles that can be absorbed. Pancreatic secre-
tions are rich in a variety of enzymes that break larger
molecules into smaller units that can be absorbed by api-
cal membrane transport proteins.

Absorption: The majority of absorption occurs within the duo-
denum and jejunum. In particular, the duodenum is respon-
sible for the bulk of fatty acid and water-soluble vitamin
absorption. In contrast, the greatest proportion of amino
acids, carbohydrates, nucleotides, and ions are absorbed in
the jejunum. Although calcium, iron and many vitamins
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are absorbed in the duodenum and jejunum, vitamin B12
is a notable exception and is absorbed in the ileum (139).
This is important to recognize, as ileal disease or surgical
resection of the ileum can have profound effects on vitamin
B12 despite having little impact on most other absorptive
processes.

Fluid transport: The jejunum, ileum, and colon absorb the
majority of fluid presented to the gastrointestinal tract.
Overall, ingestion and secretion cause approximately 9 L to
enter the gastrointestinal lumen each day, but only 200 mL
is typically lost in the stools of humans.

In addition to functions found to varying degrees in many
epithelia, gastrointestinal epithelia face unique challenges.
One adaptation that is essential to meet the demands placed
on gut epithelia is immanence of a surface area far greater
than that of any other organ, including the skin. The mas-
sive transport occurring in the small intestine is facilitated by
three levels of structural modifications that increase mucosal
surface area. First, the mucosa of the small intestine and, to
a lesser extent, the colon, is pulled into folds (Fig. 3). These
folds increase mucosal surface area three-fold. Small intesti-
nal surface area is further increased by the presence of villi,
which create an additional 10-fold amplification (Figs. 3B
and D). Finally, microvilli increase apical surface area 20-fold
(Fig. 2C-F) (183). As a result, the absorptive area of the small
intestine is 600-fold greater than if it were a simple smooth
surface. While villi are not present, microvilli and mucosal
folds also augment surface are of the colon (Fig. 3B) (183).
To perform such specific and intricate functions, gut mucosae
are supported by underlying tissues that provide structural
integrity, vascularization, innervation, and drive peristalsis.
While there are some regional specializations, the small intes-
tine displays most of the features present in other areas of
the gut.

The small intestine is divided into four concentric layers—
the mucosa, the submucosa, the muscularis propria, and the
serosa. The mucosa includes, at its luminal surface, the epithe-
lium, which rests on the basement membrane. The lamina
propria, which is composed of connective tissue, capillaries,
lymphatics, and some nerve fibers, lies directly beneath the
basement membrane (Fig. 3A). Notably, lymphatic vessels are
not prominent in the colonic lamina propria, which explains
why metastasis from colon cancers limited to the mucosa is
rare. The lamina propria is also home to the mucosal immune
system and contains neutrophils, T lymphocytes, B lympho-
cytes, plasma cells, macrophages, and other immune cells.
In general, immune cells are not present within the epithe-
lial compartment, i.e. across the basement membrane, where
they can directly contact epithelial cells. Under normal con-
ditions, the exception to this is T lymphocytes, a small num-
ber of which actively migrate within the epithelium and are
thought to provide immune surveillance (51, 52). The pres-
ence of other immune cell types, for example neutrophils,
within the epithelial compartment is generally associated

with inflammatory pathologies. Lamina propria plasma cells
secrete immunoglobulins that are transported into the lumen
by epithelial cells (119,207,266) via the polyimmunoglobulin
receptor (pIgR) and the neonatal Fc receptor (FcRn). These
receptors bind immunoglobulins at the basolateral surface,
initiate endocytosis, and then traffic across the epithelium to
release their cargo into the lumen. Beneath the lamina pro-
pria lies the muscularis mucosa. This thin layer of muscle is
innervated by Meissner’s submucosal plexus. Together, the
epithelium, lamina propria, and muscularis mucosae form the
mucosa (Fig. 3A).

Water movement across the intestinal
epithelial barrier
In the intestine, transepithelial water transport is largely para-
cellular and depends on the osmotic gradient developed by
transcellular ion and solute transport (95). The cation selective
claudin-2 pores can also act as paracellular water channels;
their upregulation in infection is critical to infectious diarrhea
and enteric pathogen clearance (221, 222, 258).While aqua-
porins are present, and their expression is altered in disease
(86, 217, 256), the lack of gut phenotypes in aquaporin
knockout mice suggests that (303) these proteins are more
important for cellular homeostasis and transport of small sig-
naling molecules (255). In contrast, aquaporins are essential
for water transport and overall secretion in other tissues,
including kidneys and salivary glands (242). Potential
roles for other transmembrane channels, including the urea
transporter-B (SLC14A1) and CFTR, for water transport
across the apical membrane have been proposed, but it is not
clear how water would then exit the cell (103).

Although the reliance of intestinal water transport on
osmotic gradients is absolute, the rate of water flux can be
slowed or accelerated by decreased or increased, respectively,
tight junction permeability. One particular example of this
is the increased tight junction permeability that occurs after
epithelial exposure to tumor necrosis factor-α (TNF) (84).
Under normal conditions, TNF reverses the normal direction
of water flux such that there is net fluid secretion into the
gut lumen, that is, diarrhea (184). However, if this increase in
tight junction permeability is prevented, net water secretion
does not occur (44). The water secretion under these condi-
tions also depends on loss of the transepithelial Na+ gradient,
normally generated by the apical Na+/H+ exchanger NHE3,
as a result of TNF-induced downregulation. Nature has pro-
vided striking evidence of the importance of NHE downreg-
ulation to this process via the TNF-related cytokine LIGHT,
which increases tight junction permeability and but does not
inhibit NHE3 (44). In contrast to the diarrhea induced by
TNF, LIGHT modestly increases water absorption due to the
increases in tight junction permeability and continued tran-
scellular sodium transport driven by NHE3. Thus, although
water transport in the intestine is largely paracellular, gra-
dients generated by transcellular ion transport provide the
necessary driving force.
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Mechanisms of intestinal barrier regulation
As noted above, tight junction permeability is increased fol-
lowing activation of Na+-nutrient cotransport (9, 18, 63, 164,
165). This is size-selective and limited to small, nutrient-
sized molecules, for example, mannitol (63). In the small
intestine, such transport occurs primarily in the villus, where
Na+-nutrient cotransporters are expressed. Previous studies
suggested that this might reflect an increase in the number of
paracellular channels (63), an idea that is consistent with the
recent observation that trans-tight junction channels open and
close dynamically (284) and the hypothesis that the open prob-
ability of these channels is increased by Na+-nutrient cotrans-
port. The physiological significance of this phenomenon with
respect to paracellular amplification of transcellular nutri-
ent absorption has been discussed above. Hints as to the
mechanism of this regulation initially came from electron
micrographs showing condensation of the perijunctional actin
cytoskeleton following activation of Na+-nutrient cotransport.
Based on this observation, phosphorylation of the myosin
II regulatory light chain (MLC), an essential intermediate
in actomyosin contraction, was explored and found to be
closely linked to Na+-nutrient cotransport-induced increases
in tight junction permeability. Further, inhibition of myosin
light chain kinase (MLCK), the principal kinase that phospho-
rylates MLC, prevented increases in both MLC phosphoryla-
tion and tight junction permeability (263, 305). Thus, while
it is theoretically possible that MLCK could phosphorylate
other targets, and, conversely that other kinases, for exam-
ple, rho kinase, could phosphorylate MLC, MLCK-mediated
phosphorylation of MLC is central to physiological regulation
of tight junctions. This regulation requires ZO-1 expression
and depends on interactions mediated by the ZO-1 actin-
binding region (ABR) (299).

The tight junction leak pathway
Building on the observation that MLCK is central to physio-
logical regulation of tight junctions, a potential role for MLCK
in TNF-induced tight junction regulation was explored. TNF
caused marked increases in MLC phosphorylation within the
perijunctional actomyosin ring, and either genetic or phar-
macological inhibition of MLCK prevented this phospho-
rylation (43, 281, 305). Further, MLCK inhibition by either
mechanism prevented TNF-induced barrier loss and diarrhea.
Thus, similar to its role in physiological tight junction reg-
ulation, MLCK is a central mediator of pathological tight
junction regulation. However, there is an important differ-
ence between these forms of tight junction regulation. Physio-
logical Na+-nutrient cotransport increases MLCK enzymatic
activity and tight junction permeability to small molecules
without marked effects on steady-state distribution of tight
junction proteins. In contrast, TNF-induced barrier loss is
associated with increased MLCK expression, enzymatic acti-
vation of MLCK, MLCK-dependent occludin endocytosis,
and, perhaps most significantly, increased paracellular perme-

ability to much larger molecules, including albumin, which
has a hydrodynamic diameter of ∼70 Å (43, 169).

While the mechanisms of occludin function remain enig-
matic, several observations indicate that occludin removal
from the tight junction is central to TNF-induced barrier loss.
First, blockade of caveolar endocytosis, either pharmacolog-
ically or genetically, prevents TNF-induced occludin inter-
nalization and tight junction barrier loss. Further, occludin
overexpression in vivo markedly attenuates TNF-induced bar-
rier loss (169). Finally, in cultured monolayers, occludin
overexpression or knockdown has been shown to reduce or
increase, respectively, paracellular permeability to macro-
molecules (31, 273). This low-capacity paracellular route,
which is not charge-selective and, according to best avail-
able estimates, allows flux of probes with diameters in the
range of 100 Å has been defined as the tight junction leak
pathway (Fig. 6A) (3, 261).

The tight junction pore pathway
Investigation of the ability of other cytokines to regulate tight
junctions led to the discovery that IL-13 increases both para-
cellular permeability and claudin-2 upregulation (92). Experi-
ments using siRNA to prevent increased claudin-2 expression
demonstrated that this upregulation is required for IL-13-
induced barrier loss (285). These studies also showed, how-
ever, that IL-13-induced claudin-2 expression increased para-
cellular permeability of Na+ ions (non-hydrated ion diameter
of 1.9 Å), but not of Cl− ions (non-hydrated ion diameter of
3.6 Å) or 4 kD dextran (diameter of 28 Å). This is consistent
with the known physiochemical properties of the claudin-2
pore, which can also accommodate water (diameter of 2.7 Å)
as well as methylamine (non-hydrated ion diameter of 3.8 Å)
and, to a lesser degree ethylamine (nonhydrated ion diameter
of 4.6 Å) (221, 222, 274, 298). Importantly, this flux route,
which is referred to as the pore pathway (Fig. 6A), is far
more selective than the leak pathway in terms of both size
and charge. The number of molecules transported, that is the
carrying capacity, of the pore pathway is however far greater
than that of the leak pathway. Notably, while the pore path-
way across intestinal tight junction is cation selective, the
pore pathway in many other epithelia is anion selective as
a result of differential claudin isoform expression (75). Size-
selectivity is confined to a narrow range in all claudins studied
to date, regardless of charge selectivity.

The distinct effects of IL-13 and TNF on tight junctions
indicate that the immune system can differentially regulate
epithelial barrier properties by selectively upregulating pore
or leak pathways (Fig. 6A). Further, these flux routes are dif-
ferentially expressed along the crypt-villus axis, where the
leak pathway dominates within the crypt while the pore path-
way accounts for the bulk of paracellular flux in the villus (63).
Moreover, as noted above, pores can be opened in response
to physiological stimuli, such as Na+-glucose transport (63,
263). Finally, the pore pathway is regulated developmentally.
One striking example of this is the marked downregulation of
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intestinal claudin-2 expression after weaning (96). Claudin-
15 (Fig. 5C), which also forms a cation-selective channel, is
coordinately upregulated. This is critical, since lack of either
claudin-2 or claudin-15 is compatible with life, but mice lack-
ing both claudin-2 and claudin-15 die within the neonatal
period (253, 280). These mice die of malnutrition, due to
inadequate paracellular recycling of transcellularly absorbed
Na+ (280). As noted earlier, this recycling is essential for
ongoing Na+-nutrient cotransport across the apical membrane
(Fig. 5A). Given their similar functions in this context, it is
therefore not clear why claudin-2 is replaced by claudin-15.
This could, potentially, be explained by unidentified func-
tional differences between these claudins. One hypothesis
could be that claudin-2 has a greater carrying capacity than
claudin-15. This would be consistent with the massive Na+-
nutrient cotransport that is needed prior to weaning, and
the somewhat reduced Na+-nutrient cotransport as the diet
changes from maternal milk to solid foods. While no data are
available to support this idea, the concept is consistent with the
observed downregulation of the apical Na+-glucose cotrans-
porter SGLT1 that occurs in ruminants as the glucose content
of the diet falls with the transition from milk to grass (66,277).

Contributions of intestinal barrier loss to
immune-mediated disease
A potential role for increased paracellular permeability in
intestinal disease was first proposed in studies of celiac and
inflammatory bowel disease reported 35 years ago (199). This
was followed by an innovative study that took advantage of
the substantial contribution of genetics to development of
inflammatory bowel disease. Analyses of Crohn’s disease
patients, their healthy first-degree relatives, and unrelated
healthy controls revealed that a subset of healthy relatives
had increased intestinal permeability probes (94, 174). Many
have suggested that these relatives, that is those with increased
permeability, might be at greater risk of subsequently develop-
ing Crohn’s disease. However, this hypothesis has never been
tested. Although a single case report does document develop-
ment of disease in a previously healthy relative with increased
permeability, this does not really address the issue, as the sub-
ject was at increased risk of developing disease regardless of
intestinal permeability (109). The topic has remained con-
troversial, as some studies have shown that healthy relatives
with increased permeability tend to carry specific mutations
in an IBD risk allele of NOD2 (30), while other studies have
failed to identify a specific genetic linkage (125). Neverthe-
less, several studies have shown that increased intestinal per-
meability in patients with inactive Crohn’s disease is a marker
of impending relapse (8, 48, 293). Whether this indicates the
presence of subclinical inflammation and may be an oppor-
tunity for therapeutic restoration of barrier function has not
been assessed in patients.

Although there are no perfect models of human inflam-
matory bowel disease in mice (126), immune-mediated mod-
els offer the greatest opportunity to understand potential

contributions of epithelial dysfunction, including barrier loss,
to disease pathogenesis. In contrast, many of the chemical
colitis models, including DSS colitis, damage the epithelium
so enormously that little epithelial function remains to be
assessed. Using an adoptive transfer model of colitis in which
naı̈ve T effector cells are transferred to immunodeficient
recipients (Fig. 6B), it has been shown that genetic inhibi-
tion of intestinal epithelial myosin light chain kinase (MLCK)
attenuates disease (245). Conversely, expression of a consti-
tutively active MLCK within the intestinal epithelium accel-
erates disease progression (245, 246). Interestingly, MLCK
inhibition also prevented claudin-2 upregulation during dis-
ease (Fig. 6B). Thus, it is possible that both pore and leak path-
ways both contribute to disease pathogenesis. Many have pro-
posed that the underlying mechanisms involve activation of
the mucosal immune system by luminal materials that are able
to traverse the pore or leak pathway. While this is an attractive
hypothesis, it remains to be tested. Further, it will be important
to consider the physiology that drives increased pore and leak
pathway permeability in disease. Is this a compensatory mech-
anism that leads to some benefit? Alternatively, this could be
a maladaptive response that ultimately promotes disease. The
latter is the thesis on which the model of “leaky gut syn-
drome” has developed. While there are certainly many people
with intestinal permeability beyond what would be considered
the normal range, and some of these patients do have intesti-
nal symptoms, a direct link is far from certain. Nevertheless,
the topic remains of great interest, as increased intestinal
permeability has been implicated in a plethora of
extraintestinal diseases including diabetes mellitus, multiple
sclerosis, graft vs. host disease, and even autism. The data
supporting these links are, at present, weak. However, as our
understanding of the dynamics of the gut lumen, including the
contributions of the microbiota (5, 67, 90, 110, 158, 161, 187,
237), grow, the relationships between intestinal permeability
and disease may become clearer.

It is unclear how the gut microbiome can directly influ-
ence barrier function during homeostasis. Changes to micro-
biota populations or a reduction in microbial diversity in
the gut is linked to inflammation, IBD, obesity, and cancer,
which suggests that metabolites elaborated by the microbiome
might have a direct role in regulating intestinal permeabil-
ity (25, 172, 182, 198, 267). However, studies to date have
been limited to crude measures of intestinal barrier function
and correlative analyses of tight junction proteins that do not
demonstrate a direct connection between the microbiome and
intestinal permeability and cannot distinguish barrier loss due
to epithelial damage from that due to enhanced paracellu-
lar, that is, tight junction, permeability (188). Some studies
have been performed in germ-free rodents, but it is notable
that these animals have underdeveloped immune systems and
exhibit excessive mucus production, both of which compli-
cate functional analyses (155). Thus, while the microbiome
is integrally linked to mucosal health, the effects of microbes
on the barrier and, conversely, of the barrier on microbial
populations, remain to be defined.
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Conclusion
Many functions are conserved across diverse epithelial sur-
faces. Nevertheless, the specific functional requirements of
each organ and anatomical site are reflected in the distinct
organizations and activities of epithelia at those sites. We have
sought to present common features while offering examples
where properties diverge as epithelia adapt to local needs. In
specific cases, we have also presented examples of epithelial
dysfunction, and how this can result in aberrant physiology
and disease.
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