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The tight junction in inflammatory disease: communication
breakdown
Karen L Edelblum and Jerrold R Turner
The intestinal epithelium restricts free passage of toxic and

infectious molecules from the gut lumen while allowing

selective paracellular absorption across the tight junction.

Inflammatory bowel disease (IBD) patients demonstrate a loss

of tight junction barrier function, increased pro-inflammatory

cytokine production, and immune dysregulation; however, the

relationship between these events is incompletely understood.

Although tight junction barrier defects are insufficient to cause

experimental IBD, mucosal immune activation is altered in

response to increased epithelial permeability. Thus, an evolving

model suggests that barrier dysfunction may predispose or

enhance disease progression and therapies targeted to

specifically restore the barrier function may provide an

alternative or supplement to immunology-based therapies.
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Introduction
Crohn’s disease and ulcerative colitis, collectively inflam-

matory bowel disease (IBD), affect 1.4 million Americans.

Although the exact cause of IBD remains unknown,

genetic susceptibility, environmental factors, and

immune dysregulation all contribute to disease patho-

genesis. In addition, IBD patients demonstrate increased

intestinal paracellular permeability, which reflects

decreased epithelial barrier function [1,2]. While it

remains unclear whether barrier dysfunction precedes

disease or results from active inflammation, increased

intestinal permeability is also observed in unaffected

first-degree relatives suggesting that a barrier defect

may lead to disease progression [3,4].

An intact monolayer of intestinal epithelial cells protects

the body from pathogens and other toxic luminal sub-
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stances. Epithelial tight junctions maintain the intestinal

barrier while regulating permeability of ions, nutrients,

and water [5]. The tight junction is a multi-protein

complex that forms a selectively permeable seal between

adjacent epithelial cells and demarcates the boundary

between apical and basolateral membrane domains

(Figure 1).

Involvement of the tight junction in IBD
The tight junction is composed of multiple proteins

including transmembrane proteins such as occludin, tri-

cellulin, claudins and junctional adhesion molecule

(JAM). The intracellular portions of these transmembrane

proteins interact with cytoplasmic peripheral membrane

proteins, including zona occludens (ZO)-1,-2,-3 and cin-

gulin [6]. These tight junction and cytoplasmic proteins

interact with F-actin and myosin II, thereby anchoring

the tight junction complex to the cytoskeleton. Once

thought to be static, the association of these proteins

with the tight junction is highly dynamic [7��] and may

play a role in epithelial barrier regulation.

Occludin was the first tight junction-associated integral

membrane protein identified [8]. Although occludin

knockout mice exhibit intact intestinal epithelial tight

junctions and display no observable barrier defect [9,10],

they have a complex disease phenotype that includes

severe growth retardation, male sterility, chronic gastritis,

and osteomalacia [10]. While these data have been inter-

preted by some to suggest the lack of an important role for

occludin in tight junction integrity, in vitro studies

demonstrate crucial roles in tight junction assembly

and maintenance [11–13]. This suggests that further

analysis of occludin knockout mice under stressed con-

dition may reveal in vivo functions of occludin and

provide new insight into mechanisms of tight regulation

[5].

Tricellulin is related to occludin but is preferentially

localized to the tricellular junction region where three

cells meet [14]. Although tricellulin is crucial to main-

tenance of ion gradients within the inner ear [15,16],

tricellulin expression in the intestine has not been

described. Given the phylogenetic and structural sim-

ilarities between occludin and tricellulin [14], it may be

that the tricellulin accounts for normal intestinal barrier

function in occludin knockout mice. This hypothesis

could also be applied to inflammatory bowel disease,

where intestinal epithelial occludin expression is reduced

[17]. While untested the notion that tricellulin can
ease: communication breakdown, Curr Opin Pharmacol (2009), doi:10.1016/j.coph.2009.06.022
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Figure 1

Cytokine regulation of epithelial barrier function. Pro-inflammatory

cytokines such as TNF, IL-1b, and LIGHT promote barrier dysfunction by

inhibiting transcription of junction proteins and inducing cytoskeleton-

mediated redistribution of tight junction proteins. These cytokines

promote transcription of MLCK, which when activated phosphorylates

myosin II, resulting in reorganization of tight junction proteins, including

endocytic removal from the apical junctional complex.
compensate for loss of occludin expression is consistent

with the observation that occludin knockdown in cultured

monolayers causes tricellulin to redistribute from tricel-

lular to bicellular junctions [18�]. Thus, it will be import-

ant for future studies to assess the expression, trafficking,

and function of tricellulin in IBD.

The observation that barriers can develop in the absence

of occludin prompted a continued search essential barrier-

forming components of the tight junction [19]. This led to

the identification of claudin-1 and claudin-2 [20]. At least

24 different claudin proteins are present in mammals [21],

and these proteins are the primary component of tight

junction strands [22]. While the molecular anatomy of the

tight junction is not yet clear, it is certain that claudins are
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able to form aqueous pores that permit ions and

uncharged molecules to pass in a charge-selective and

size-selective manner [23,24,25��]. This appears to be

relevant to IBD, as claudin-2, which increases paracellular

conductance of sodium ions and small uncharged mol-

ecules [25��,26], is increased at the tight junction in IBD

[17,27]. By contrast, claudin-3, claudin-4, claudin-5, and

claudin-8 are removed from the tight junction in IBD

patients [27,28]. The mechanisms by which claudin

expression is regulated are not fully understood, although,

as discussed below, cytokine signaling is one important

factor. Altered transcriptional regulation and vesicular

trafficking of claudins, and other tight junction proteins,

in disease may be important therapeutic targets in the

future.

Causes of barrier dysfunction in IBD
Barrier dysfunction includes increased paracellular per-

meability resulting from enhanced flux across the tight

junction, but may also be caused by epithelial damage,

including apoptosis, erosion, and ulceration [17,28,29].

While some data suggest that the barrier is maintained

despite epithelial apoptosis [30–32], there is not uniform

agreement on differing results that probably reflect the

extent of apoptosis and varying experimental systems.

Nonetheless, there is consensus that damage to a single

cell or small group of cells, such as that induced by

cytokines or inflammatory cell transmigration, barrier

integrity is rapidly repaired by an actomyosin-dependent

purse string mechanism [33,34]. It also seems clear that

extensive epithelial damage must compromise the muco-

sal barrier. Improved understanding of the processes that

regulate mucosal healing and development of means to

accelerate epithelial repair are, therefore, important goals

for treatment of inflammatory bowel disease.

In contrast to the gross barrier loss that occurs with

epithelial damage, barrier dysfunction due to tight junc-

tion regulation is more selective. Therefore, it is import-

ant to discriminate between increased intestinal

permeability due to epithelial loss and that which reflects

tight junction-dependent changes in paracellular per-

meability. The latter has been carefully studied as a

function of cytokine production. These studies have

primarily been performed in vitro, as in vivo models

may be complicated by cytokine-dependent immune cell

recruitment and activation within the mucosa. The most

well-studied cytokine that causes barrier dysfunction due

to epithelial tight junction regulation is tumor necrosis

factor (TNF) [5]. This is likely relevant to disease, as

TNF is a current target of current biologic therapies for

IBD [35,36], and anti-TNF therapy restores the gut

barrier in Crohn’s disease [37]. Therefore, our laboratory

and others have focused on understanding the mechan-

isms by which inflammatory cytokines regulate tight

junction permeability (Figure 1). Freeze-fracture elec-

tron microscopy studies showed that TNF treatment of
ease: communication breakdown, Curr Opin Pharmacol (2009), doi:10.1016/j.coph.2009.06.022
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Figure 2

Tight junction morphology is altered in immune-mediated diarrhea. Mice were injected intraperitoneally with anti-CD3 antibody to induce acute

immune-mediated diarrhea, which is accompanied by increased TNF and IFNg production. Immunofluorescence localization of ZO-1 and occludin in

small intestinal epithelium was assessed before or 3 h after anti-CD3 treatment. While ZO-1 distribution appears unchanged in transverse sections,

when viewed en face, ZO-1 staining at the junction appears thinner and concentrated more at tricellular junctions with anti-CD3 treatment. Similarly,

occludin internalization into vesicles is seen in both transverse and en face sections following treatment with anti-CD3 (from [44] with permission).
HT29/B6 cells resulted in decreased tight junction strand

number and complexity and increased frequency of

strand breaks [38]. TNF also inhibits occludin promoter

activity [39] and causes redistribution of occludin, ZO-1,

and claudin-1 [40] (Figure 2). In vitro, the major effector

responsible for TNF-induced tight junction modulation

is myosin light chain kinase (MLCK), and transcription

and translation of epithelial MLCK are increased by TNF

in vitro and in vivo [40–42]. Moreover, MLCK inhibition

corrects TNF-induced barrier defects in vitro and in vivo
[43,44]. MLCK expression and activity are also enhanced

in experimental models of IBD [45] and in intestinal

epithelium of human IBD patients [46]. While only

correlative, the further observation that the degree of

MLCK upregulation in human patients parallels disease

activity is consistent with the hypothesis that increased

mucosal cytokine production contributes to MLCK-

mediated barrier loss [46].

Other pro-inflammatory cytokines may mediate barrier

function through modulation of MLCK activity. For

example, LIGHT, another TNF family member, also

promotes MLCK-induced tight junction disruption [47].

Although TNF and LIGHT signal through different

epithelial receptors [45,47], they both likely contribute

to IBD [48]. While the details are less well defined, it

also appears that IL-1b enhances paracellular per-

meability via MLCK [49]. Thus, MLCK represents a

common effector used by multiple cytokines to modu-

late paracellular permeability and is an important target

for future therapies to restore barrier function during

active disease.
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Roles of barrier regulation in colitis
First-degree relatives of Crohn’s disease patients are at

increased risk of developing IBD. The presence of barrier

defects in some healthy relatives suggests that barrier loss

may contribute to disease progression [1,2]. This hypoth-

esis is supported by the demonstration in multiple studies

that increased intestinal paracellular permeability during

remission is a marker of impending disease reactivation

[50]. Despite this, no mutations in tight junction proteins

or defined regulators of barrier function have been

reported in IBD [51]. However, the genetic linkage of

certain NOD2/CARD15 mutations to barrier defects [4]

suggests that immune activation may be responsible for

the early barrier defects observed in healthy relatives and

in patients before disease reactivation. Given the essen-

tial role of MLCK in immune-mediated tight junction

regulation, our laboratory generated a transgenic mouse

expressing constitutively active MLCK (CA-MLCK)

exclusively within an intestinal epithelium [52��].
Although CA-MLCK transgenic mice display chronic

increased epithelial permeability, these mice did not

develop disease [52��]. However, subclinical mucosal

inflammation was present in these mice, as demonstrated

by increased CD4+ lamina propria mononuclear cells

(LPMC) and enhanced migration of CD11c+ positive

dendritic cells to the superficial lamina propria. Mucosal

expression of TNF and IFNg was increased at six weeks

of age, and these increases were not strictly dependent on

mature lymphocytes, as findings were similar in Rag1�/�/

CA-MLCK mice. Moreover, adoptive transfer of

CD4+CD45Rbhi cells into Rag1�/�/CA-MLCK mice

resulted in accelerated disease development as well as
ease: communication breakdown, Curr Opin Pharmacol (2009), doi:10.1016/j.coph.2009.06.022
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Figure 3

Increased paracellular permeability accelerates immune-mediated colitis. CD4+CD45Rbhi (triangles) or CD4+CD25Rblo (circles) T cells were adoptively

transferred into RAG1�/� mice (red symbols) or RAG1�/� mice expressing constitutively active MLCK (yellow symbols). RAG1�/�/CA-MLCK recipients

transferred with CD4+CD45Rbhi T cells exhibited increased weight loss and mortality post-transfer than RAG1�/� recipients (from [52��] with

permission).
more severe colitis than Rag1�/� mice (Figure 3). Thus,

barrier dysfunction may predispose or contribute to pro-

gression of immune-mediated intestinal damage. Consist-

ent with this, one recent study has shown that an antagonist

against zonulin, which regulates intracellular tight junction

disassembly, may limit mucosal immune activation in IL-

10�/�mice [53��]. Development of therapeutic approaches

to correct the molecular defects that give rise to barrier

dysfunction, therefore, has great potential as a non-immu-

nologic therapy for inflammatory bowel disease.

The absence of ‘spontaneous’ disease in CA-MLCK

transgenic mice might prompt one to conclude that the

barrier defect induced by the transgene was insufficient.

However, the magnitude of barrier loss observed was

similar to that in healthy relatives of Crohn’s disease

patients and, as noted above, the transgenic mice had

increased susceptibility to adoptive transfer colitis [52��].
Interestingly, increased colonic mucosal IL-10 expression

was present the CA-MLCK transgenic mice [52��]. This

suggests that, in immunologically ‘normal’ individuals,

barrier defects may trigger immunoregulatory responses

that prevent inappropriate immune activation. It is

important to recognize that these barrier defects are

quantitatively and qualitatively different from the mas-

sive barrier loss induced by severe, widespread epithelial

destruction and mucosal ulceration, as occurs in some

enteric infections as well as the DSS model of colitis.

Consistent with the hypothesis that limited barrier

defects may activate immunoregulatory processes, one

recent study has shown that transient barrier defects can

protect mice from future insults [54��]. In this study,

barrier function was disrupted by local epithelial damage

after intrarectal ethanol administration. In addition to
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increased intestinal permeability, these treatments

enhanced IFNg and IL-10 production by LPMC and

caused expansion of a regulatory CD4+ T cell population

expressing latency-associated peptide (LAP). While

expansion of CD4+LAP+ LPMCs was required for pro-

tection, adoptive transfer of these cells was insufficient to

ameliorate colitis, suggesting that other factors contribute

to the observed prevention of disease [54��].

Taken together, both of these studies show that barrier

dysfunction alone is not sufficient to promote disease, but

can alter susceptibility to colitis through regulation of

mucosal immunity. While much work is needed to define

the mechanisms of this immunoregulation, the increased

exposure of the mucosa to luminal microbiota or their

products by Toll-like receptors, including TLR2, may be

involved [54��]. These studies highlight the importance

of the subtle interplay between epithelial barrier function

and mucosal immune regulation that may represent a

future target for disease prevention.

Conclusions
Epithelial barrier dysfunction and inflammation are major

contributors to the pathogenesis intestinal disease; how-

ever, much remains unknown about how these two pro-

cesses contribute independently to disease initiation.

Cytokine-induced barrier dysfunction is known to exacer-

bate colitis, perhaps due to increased translocation of

microbial products. While barrier dysfunction alone is

insufficient to cause disease, it can lead to subclinical

activation of immune responses that may affect disease

development at later times. Careful study of tight junc-

tion regulation and its contribution to disease initiation

will probably provide new targets for the development of

IBD therapeutics.
ease: communication breakdown, Curr Opin Pharmacol (2009), doi:10.1016/j.coph.2009.06.022
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